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Abstract

Visualization and analysis of primary and secondary X-ray computed tomography (XCT) data has
become highly attractive for boosting research endeavors in the materials science domain. On the
one hand, XCT allows to generate detailed and cumulative data of the specimens under investiga-
tion in a non-destructive way. On the other hand, through the conception, the development, and
the implementation of novel, tailored analysis and visualization techniques, in-depth investigations
of complex material systems turned into reality, e.g., in the form of interactive visualization of
spatial and quantitative data, uncertainty quantification and visualization, comparative visual-
ization, ensemble analysis and visualization, visual parameter space analysis, and many others.
Visual analysis of XCT data enables a detailed understanding of the internal structures and the
characteristics of materials and thus facilitates studies on a multitude of phenomena, at multiple
scales, in different dimensions, or even using different modalities. This was simply impossible
before.

This habilitation thesis presents contributions to computer science in terms of novel methods
and techniques as well as respective algorithms and data structures, which are advancing visual
analysis and visualization for enabling insights into XCT data on material systems. The introduced
methods and techniques focus on three distinct technical areas of visual analysis and visualization
of XCT data. For each area, the problem statements, important research questions to be solved
as well as the contributions of the habilitation candidate are discussed:

1. Interactive visualization of spatial and quantitative data: Visualization and analy-
sis techniques are introduced in this thesis for exploring, encoding, connecting, abstracting
elaborating, reconfiguring, filtering, and finally selecting in "rich" XCT data. To reveal
insights into complex objects, MObjects (i.e., mean objects) is discussed as a novel aggrega-
tion and exploration technique, which computes average volumetric representations from
selections of individual objects of interest. To analyze various of these mean objects and to
compare them with regards to their individual characteristics, visual analysis techniques as
presented in FiberScout facilitate a detailed exploration of primary spatial data together
with derived quantitative data (i.e., secondary data).

2. Visual parameter space analysis (vPSA): The contributions towards vPSA focus on
concepts for exploring and analyzing the space of possible parameter combinations of
algorithms, models, and data processing pipelines as well as their effects on the ensemble
of results. The presented methods and techniques visually guide users in finding adequate
input parameter sets, leading to optimal output results. In particular, the vPSA of segmen-
tation and reconstruction algorithms is investigated. Similarity Metrics are introduced for
comparing features as well as their characteristics.
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3. Comparative visualization and ensemble analysis: The comparison of larger sets of
ensemble members as generated by vPSA is difficult, tedious, and error-prone, which is often
exacerbated by subtle differences in the individual members. Here, techniques are presented
to study the differences between multiple results regarding their visual representation as well
as their characteristics. Dynamic Volume Lines is a novel technique for the visual analysis
and comparison of large sets of 3D volumes using linearization methods combined with
interactive data exploration. This technique is accompanied by a comparative visualization
in the spatial domain to establish a link between the abstracted data and real world
representations.

Finally, in terms of visualization theory and modeling, this thesis abstracts the characteristics of
visual parameter space analysis in a holistic conceptual framework. It also classifies and frames
the novel area of visual computing in materials science, identifying research gaps within this
domain.
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CHAPTER 1
Introduction

This thesis presents a selection of my research in the field of visualization throughout the period of
the last ten years. In this time my research focused on the question of how to visually analyze and
explore ”rich” X-ray computed tomography (XCT) data. The first chapter serves as introduction
to this area, providing its classification as a big data problem together with a definition of ”rich”
XCT data. It outlines respective challenges in terms of rich XCT data analysis and visualization,
framing the context of the core papers of this cumulative habilitation thesis. In the second chapter,
these challenges are addressed and reflected in the context of high level related work (for the
detailed related work, readers are referred to the core papers in Chapter 3). My research towards
the identified research questions is presented and finally selected contributions towards computer
sciences for solving these challenges are discussed. In the authorship statement, the core papers
are listed and briefly described, indicating the contributions I made to each individual work. The
thesis is completed with an outlook into open research questions, trends, and developments for
future research.

1.1 Motivation and Challenges

Industrial X-ray Computed Tomography (XCT) is an imaging technique, which is used in a
wide variety of diagnosis and (visual) analysis scenarios [Hei09]. What renders this technique
highly advantageous and beneficial compared to others is its ability to generate detailed and
cumulative data of the specimens under investigation in a non-destructive way [KH19]. Regarding
its etymologic origin, tomography originally stems from Greek ”tomos”, which means”slice”
or ”section”, and graphien, meaning ”to write”. This etymologic consideration hints at the
basic principle of XCT: Technology-wise XCT finds its foundation in X-ray radiation which
non-destructively irradiates specimens in order to evaluate the attenuation of these X-rays by the
specimen’s matter in the form of radiographic projection images. Typically, not just a single but a
large number of these radiographic projection images are recorded from different projection angles
along a predefined scanning trajectory. The series of projection images is then reconstructed
using a mathematical algorithm in order to generate 2D cross-sectional or 3D volumetric images
of the scanned object [CDL18]. The reconstructed 2D images and 3D volumes are also referred
to as primary XCT data and allow to generate a virtual (typically volumetric) representation of
the object.
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1. Introduction

XCT as big data problem
Within the last 25 years of its increasing industrial use, XCT significantly evolved from a
plain imaging technique to a true traceable metrology and characterization technique, which
facilitates detailed measurements, analyses, and quantification [CDL18]. In fact, XCT’s evolution
is best explained by considering XCT based data generation and analysis as a big data problem:
According to Patgiri and Ahmed [PA16], the big data paradigm is a game changer in virtually any
area, such as materials science, (bio-)medicine, physics, aeronautics etc., where massive amounts
of data are generated. In their work they summarize the concept of ”V’s” for characterizing
big data problems starting from Volume, Variety, Veracity, Velocity, Value, Validity, Variability,
Volatility, Virtual, Visualization, Visibility, to Complexity. Out of these characteristics, the first
four V’s are of utmost importance concerning the evolution of industrial XCT, which render XCT
data analysis and visualization a true big data problem:

• Volume: In terms of volume, XCT used to generate data volumes of reasonable size in
its early years which were ranging in the area of (several hundreds of) megabytes of 8 bit
unsigned integer data. Currently, state of the art XCT devices generate volumes of 40963

voxels (i.e., volumetric elements) or more in 32 bit float in a single scan. These data sizes
will be even increased, if special XCT modes are employed, such as stacked and tiled XCT
scanning modes, virtual detector enlargements, or similarly, if spatio-temporal data are
generated for analyzing ongoing processes in 4D-XCT data acquisition [AAS+16]). Such
XCT data may yield sizes of (tens to hundreds of) terabytes of primary XCT data.

• Variety: Compared to early XCT imaging focusing on primary XCT data only, current
XCT data analysis is facing increasingly heterogeneous data. First of all, XCT now offers
different modalities to be considered. Aside the conventional absorption contrast images
also phase contrast and dark field contrast [MFW+19], dual or multi energy XCT data
[Hei09], or even spectral data [AFK+14] may be considered for data analysis. The different
modalities do not necessarily feature the same extents and resolutions and may thus require
additional interpolation or even registration steps. Secondly, in a lot of applications also
secondary data is extracted using custom data analysis pipelines to generate abstract
data on features of interest [WAL+14]. In the context of this thesis the term "feature" is
used from an application perspective and thus refers to spatial objects (e.g., pores, fibers,
inclusions etc.). Secondary XCT data is typically tailored to the respective data analysis
scenario and specifically required to characterize individual features of interest. In case of
fiber-reinforced composite materials, e.g., each fiber, each pore, or each void in the primary
data is individually characterized by attributes such as volume, surface, aspect ratio, extent,
center, shape factors, spherical coordinates, feature orientation etc., which are computed
and made available together with primary XCT data for the analysis.

• Veracity: Regarding veracity, the (un-)certainty and quality of XCT data and respective
analyses may be considered. Data veracity was neglected in XCT for a long time. In
the advent of XCT transitioning from simple imaging to traceable metrology and char-
acterization, the uncertainty prevalent in the data as well as information derived thereof
came into focus [HKMG08]. Since then, investigations have been carried out, which were
focused on the discovery and the characterization of influencing factors that contribute to
uncertainty budgets in the generated results [SN10], as well as investigations on analyzing
the uncertainty of primary and secondary XCT data [AHK+13].

• Velocity: In terms of data velocity, XCT is currently striving to move forward from a
static, lab based data technique towards a fast, inline inspection technique. Fast XCT
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acquisition and data analysis is thus increasingly introduced into industrial production
lines in the form of a fully integrated inline XCT analysis, which is capable of facilitating
XCT data generation and data evaluation within cycle time. To avoid compromising cycle
times, inline XCT needs to be highly optimized to its target application. Using a low
number of intelligently placed projection images to ensure fast data acquisition and / or
limited angular views on the specimens of interest, investigations of well-known samples are
facilitated within seconds through tailored analysis protocols [PJC+17].

1.2 Visual Analysis of ”Rich” XCT Data

In terms of XCT’s application areas, especially materials science is strongly benefiting from XCT’s
characteristics, enabling non-destructive and highly detailed volumetric imaging of a wide variety
of materials and material systems [HS17]. The combination of high resolution XCT imaging
coupled with tailored analysis and visualization techniques has become a catalyst to accelerate
research endeavors in this and other domains. Using visual computing and more specifically
visual analysis, complex phenomena in multiple scales, multiple dimensions, and even multiple
modalities can now be studied in a comprehensive and fully integrated manner. What is most
important for such investigations of complex phenomena is to design, develop, and employ scalable
solutions for the quantification, exploration, and analysis of ”rich” XCT data.

Definition of ”Rich” XCT Data: Rich XCT data significantly extends on slice-based or
volumetric data from conventional XCT imaging. It may integrate one or more primary XCT
datasets, recorded at different resolutions or using different XCT modalities, which are generated
as direct outputs by the respective XCT device or modality. Rich XCT data may also contain
derived spatial information such as segmentation masks or label images. Furthermore, rich XCT
data may encompass quantitative information of features in the primary data, e.g., lists of derived
attributes describing each feature of interest. Finally, ensembles of rich XCT data are required
for studying time dependent phenomena. So in summary, rich XCT data is best characterized as
complex ensemble of multi-dimensional, multi-modal, multi-scalar, and multi-variate data, which
may vary over time or during an investigated process.

In recent years, a reasonable number of techniques has been introduced to provide novel insights
through visual analysis of rich XCT data. Several workshops and discussion rounds [PSI17],
[Dag19] as well as reports thereof [HKL+19] analyzed these developments in order to frame the
existing work as well as to identify current and future challenges in terms of visual analysis of
rich XCT data. These workshops and discussion rounds were (co-)organized by the author and
build an important pillar of this work. Specifically, the following challenges will be addressed in
this thesis:

Challenge 1: Interactive Visualization of Spatial and Quantitative Data
As a result of the ever-increasing complexity of rich XCT data in combination with growing
demands regarding their analysis, especially passive visualization and standard visualization
techniques have reached their limits. While passive visualization does not incorporate interaction at
all, also standard techniques do not necessarily feature the highly anticipated interaction techniques
for in-depth analyses, in order to select, encode, abstract/elaborate, aggregate, reconfigure, connect,
or explore data according to the classification proposed by Yi et al. [YKSJ07].

Interactive visualization techniques, however, strongly support the analysis process and respective
techniques are therefore particularly helpful to support visual analysis processes. To interactively
visualize spatial and quantitative data is thus a core challenge for analyzing and exploring either
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rich XCT data ensembles, or single ensemble members thereof. A clear need is seen in structured
design studies on integrated visual analysis tools [SMM12]. These need to be capable of handling
rich XCT data and tailored to a specific application. These also need to guide users in their
investigations to provide insights using meaningful and easy to understand visual metaphors.
Especially for the visual analysis of time-varying data in dynamic processes, with materials under
load or in different environmental conditions, such integrated tools are highly anticipated. Aside
the visualization aspects, this challenge also encompasses preprocessing steps, e.g., for feature
quantification, segmentation, and clustering, which are required to derive secondary data from
primary XCT data in order to characterize features and their attributes.

Challenge 2: Visual Parameter Space Analysis
Visual parameter space analysis (vPSA) is dedicated to the challenge of systematically varying
input parameters of models, algorithms, pipelines, or other data generation processes (i.e.,
sampling the input parameter space). In vPSA, this first sampling and data generation process
is typically coupled with a second visual analysis process investigating the used inputs versus
the generated outputs. The visual analysis of the generated output results is particularly helpful
for the investigation of relations between the input parameter settings and their corresponding
outputs by means of interactive visualization techniques [SHB+14].

In terms of XCT, this challenge centers around vPSA techniques, which are required to sample
and evaluate the high dimensional input parameter spaces in feature extraction, segmentation, and
quantification algorithms (as well as data analysis pipelines), to understand their parametrization
with respect to the generated outputs. Furthermore, finding potential correlations in the input
parameters is of similar importance as finding parameters, which either show a strong or a
negligible influence on the generated results. Such analyses need to reveal effects not only on
primary, but also on derived secondary XCT data. Finally, respective methods need to guide
users in finding adequate input parameter sets leading to optimal output results, i.e., optimal
primary and secondary XCT data, for the defined analysis scenario.

Challenge 3: Comparative visualization and ensemble analysis
A comparison of many ensemble members is difficult, tedious, and error-prone, and often ag-
gravated by just subtle differences in the individual members. Respective approaches may be
classified using the taxonomy of Gleicher et al. [GAW+11] for visual designs in comparative
visualization. This taxonomy classifies techniques into three basic categories: juxtaposition,
superposition, and explicit encoding.

The challenges of comparative visualization and ensemble analysis of large and complex data
ensembles with numerous individual ensemble members are often linked with those of vPSA.
Considering primary XCT data ensembles, the differences in terms of intensities of the voxels
to be compared are typically very small and originate from various effects, such as detector
efficiency, fluctuations of the X-ray source, or noise in the data, even for constant input parameters.
Similarly, for secondary data, only small and slight changes in the extracted attributes may
be observable and thus influencing the analysis. For this reason, evaluations of whether a
particular parameter set provides improved results as compared to already studied parameters is
a hard problem, especially for complex rich XCT data. This problem even exacerbates, if larger
numbers of ensemble members or even the complete ensemble need to be compared in the analysis.
Respective techniques for the visual analysis of large sets of rich XCT data are therefore required,
employing novel comparative visualization techniques to generate insights into variations in the
data as well as interesting areas.
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Grand Challenge: Visualization Theory and Modeling
Aside the task-oriented challenges, this thesis also contributes to the grand challenge of visual-
ization theory and modeling in attempts to structure and extract conceptual models from the
existing body of work. Specifically, the properties of visual parameter space analysis are analyzed
in order to generate a holistic conceptual framework, which is capable of summarizing, abstracting,
and classifying the characteristics of visual parameter space analysis into a holistic conceptual
framework. Secondly, to review, classify, and shape the area of visual computing in materials
science, a state-of-the-art report outlines the benefits of materials science coupled with visual
computing approaches. Both works are identifying research gaps within their domains.

In the following chapter, the core contributions of this thesis are outlined, providing solutions to
the raised challenges. These contributions are arranged around the distinct technical areas of
visual analysis and visualization of XCT data.
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CHAPTER 2
Contributions

After obtaining my PhD in 2009, I contributed to 34 peer-reviewed publications, 24 of which are
journal articles, 6 are fully reviewed conference publications, and 4 are book chapters. One of
these publications achieved a best paper award. The main part of my publications is published at
top visualization conferences and journals. It should be noted, that papers which are accepted
for the top visualization conferences typically appear as journal articles of a respective special
issue on the conference. IEEE Vis, IEEE InfoVis and IEEE VAST papers are published in the
IEEE Transactions on Visualization and Computer Graphics journal (impact factor (IF): 4.558).
Papers presented at the EuroVis conference appear in the Computer Graphics Forum journal (IF:
2.116). Furthermore, I publish applications of the presented techniques as well as case studies in
journals of the nondestructive testing (NDT) domain, such as Elsevier NDT&E International
Journal (IF: 3.461), Springer Journal of Nondestructive Evaluation (IF: 1.950), Taylor&Francis
Nondestructive Testing and Evaluation (IF: 1.424), and others. The peer-reviewed publications
are complemented by a total of 60 other publications, such as conference contributions, short
papers, posters.

The remainder of this chapter introduces the main contributions of the cumulative habilitation
to the state-of-the-art at a high level. Regarding the detailed contributions of each individual
publication the reader is referred to Chapter 3. Table 2.1 ff list all papers that are included as
full texts of this thesis. The respective contributions were selected on the basis of their impact in
the scientific community, the significance of the contributions the author of this thesis made to
all of them, as well as how they fit in the overall scope of the thesis. The following sections are
structured according to the challenges identified in the introduction of this thesis in Chapter 1.

2.1 Challenge 1: Interactive Visualization of Spatial and Quantitative
Data

When we address a problem in terms of interactive visualization of spatial and quantitative
data, we typically do a design study. While general concepts on visualization, analysis, and
design are outlined by Munzner [Mun15], an efficient way for structuring such design studies
is the methodology as introduced by Sedlmair et al. [SMM12]: This methodology consists
of three major phases: (1) the precondition phase, (2) the core phase and (3) the analysis
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phase. In the precondition phase (1), the stages of learning, winnowing, and casting focus on
preparatory aspects regarding the actual visualization research. Here, we first need to learn
about the visualization problem and the respective state-of-the-art before we can proceed and
select promising collaborations for solving the problem. This phase is completed by casting the
collaborators’ roles in the visualization project. The core phase (2) of a design study contains the
four additional stages of discovering, designing, implementing, and deploying, which are covering
the actual design and implementation steps. We need to first discover what is most important
by characterizing the problem and by abstracting the most relevant aspects in order to select
methods based on close interaction with domain experts. Secondly, we need to design visualization
methods for abstracting data, suitable visual encodings as well as interaction concepts before
we can start with the actual implementation of prototypes, tools, and usability concepts. The
deployment finalizes the core phase by releasing the software as well as gathering feedback. The
last phase is the analysis phase (3) which is a reflection step to confirm, refine, or reject our
hypotheses, as well as to propose guidelines of how to use the respective method. When all these
steps have been completed the respective design study paper on the newly introduced method is
written.

The related work in this area is diverse and comprises general concepts in the design of visualization
techniques as discussed in Munzner’s book on Visualization Analysis and Design [Mun15],
interaction concepts as discussed by Yi et al. [YKSJ07], or respective methodologies as introduced
by Sedlmair et al. [SMM12]. More tailored to the original area of this challenge is related
work on the interactive visualization of spatial and quantitative data. For example, Radoš et
al. [RSM+16] propose extensions to focus and context visualizations using novel linking and
brushing techniques (i.e., the percentile brush and the Mahalanobis brush) for quantitative
analyses. Mindek et al. [MMGB17] introduced a model for data sensitive visual navigation
in medical visualization. Torsney-Weir et al. [TWSM17] suggested using 1D slices for multi-
dimensional continuous functions in a system called Sliceplorer. Finally, related work can also
be seen in visualization for materials science applications. In their approach to explore steel
fibers in fiber reinforced sprayed concrete, Fritz et al. [FHG+09] quantify fiber properties such
as fiber orientation and respective distributions based on a direction sphere histogram. Other
approaches have demonstrated novel concepts in terms of feature-based tensor field visualization
for fiber reinforced polymers as discussed by Zobel et al. [ZSS15] or in terms of exploring porous
structures with illustrative visualizations by Grau et al. [GVTA10].

My research in terms of Challenge 1 focuses on the visual analysis of rich X-ray computed
tomography data for advanced materials science applications as indicated in the introduction
section. Here, the characterization and visual analysis of complex, heterogeneous materials are of
utmost importance. Advanced composites and more specifically fiber reinforced polymers are
promising candidate materials for a number of current and future applications. They facilitate
the integration of highly anticipated industrial demands regarding cost efficient, function-oriented,
fully integrated, and lightweight components. However, to generate such tailored, application
specific materials and components, precise analyses are required. For composite materials, all
individual parts of the respective material system are of interest, as they have a direct impact
on the targeted specifications. The matrix component (i.e., epoxy resin matrix) keeps the
reinforcements in place and acts as glue component. The reinforcements (i.e., fibers, arranged in
different directions) are carrying the actual load. They need to be aligned in the load direction(s)
in order to reach an optimal performance of the final component. In addition, also manufacturing
induced errors and defects (e.g., pores in the matrix or inside the fiber bundles, inclusions of
foreign materials, or general voids) may interfere with the targeted specifications. They may
severely affect the overall strength and durability and thus cause material failure (e.g., cracks,
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2.1. Challenge 1: Interactive Visualization of Spatial and Quantitative Data

Figure 2.1: FiberScout [WAL+14] is an interactive visualization prototype for primary and
secondary XCT data of fiber reinforced composites focusing on exploring and connecting data.

fractures, or delamination). In order to address the domain requirements we set up a number of
research questions to provide insight. In this area we investigate the following research questions:

• What are the most important feature characteristics?

• What is the relationship between these?

• Can we visually connect features by their characteristics?

• What are suitable techniques to explore, filter, and connect feature sets?

• Which visual metaphors can be used to encode, abstract, or reconfigure sets of features
from rich XCT data?

• Which interaction concepts support respective analysis workflows?

My contributions to computer science in the wake of these research questions are found in
interactive visualization techniques as well as visualization pipelines for spatial and quantitative
XCT Data [WAL+14], [WAG+16], [RGK+13], [RPK+12]. These techniques and pipelines are
integrated in interactive visualization prototypes, e.g., as shown in Figure 2.1. According to
Yi et al.’s taxonomy of interaction techniques [YKSJ07], we developed and introduced concepts
for exploring rich XCT data (i.e., show me something else), for encoding (i.e., show me a
different representation), for connecting (i.e., show me related items), for abstracting and
elaborating (i.e., show me more or less detail), for reconfiguring (i.e., show me a different
arrangement), for filtering (i.e., show me something conditionally), and finally for selecting
(i.e., mark something as interesting) in rich XCT data. Some of these contributions are outlined
in the following sections. All proposed techniques and methods have been thoroughly evaluated,
typically by two groups of visualization (approx. 10 Master and PhD students) and domain
experts (approx. 10 NDT practitioners and material scientists) respectively. The evaluations
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were carried out using demonstrations followed by questionnaires. The results are presented using
a five-point Likert scale.

Explore, Connect

FiberScout [WAL+14] is an interactive visualization prototype for primary and secondary XCT
data of fiber reinforced composites (see Figure 2.1), which especially focuses on exploring and
connecting data according to Yi et al.’s taxonomy. A parallel coordinate plot (PCP) displays all
feature (i.e., fiber) attributes on parallel coordinate axes. Each individual feature is represented
by a polyline, connecting these parallel coordinate axes at the value of the respective attribute.
The PCP is employed to explore and connect features to initial feature classes of interest, which
may be refined in a scatter plot matrix (SPLOM) subsequently. In contrast to the PCP, a
SPLOM displays pairwise scatter plots of all possible combinations of feature attributes, which
are arranged in a matrix. This single matrix based representation visualizes correlations in fiber
attributes and facilitates a detailed (de-)selection of individual features as well as grouping of
similar features through filtering and brushing operations. Combining PCP, SPLOM and a class
explorer for storing feature classes of interest makes up the FiberScout core system for interactive
visualization of spatial and quantitative data. All views and visual metaphors are linked with
each other for data exploration. They are further complemented with 2D or 3D renderings of the
original data, in order provide the spatial context of the fibers in the data. This way the data
can be explored according to different aspects and hidden relations between the attributes or
correlations of similar features and feature classes may be revealed. Although the focus is on
exploration and connection of data, FiberScout also integrates interaction techniques for selecting
(e.g., select individual items and groups of items), for encoding (e.g., encode the fibers’ color
according to their orientation), for reconfiguring (e.g., 2D projections of features such as porosity
maps [RPK+12]), and filtering (e.g., filtering of fiber classes, refinements of initial classifications).

Encode

Often it is necessary to encode data for gaining overviews as well as hidden insights. Regarding
encodings, the characteristics of the features of interest may already indicate potential directions
for suitable visual metaphors. For instance, fibers typically feature a large aspect ratio, a circular
cross-sectional shape, and a cylindrical overall structure. When integrating the characteristics of
fibers in a visual metaphor encoding orientation, a beneficial way is to transform the Cartesian
coordinates of the start and endpoints of the fibers into polar coordinates. Typically, only the
orientation is of interest in this case, since there is no predefined starting point in symmetrical
features such as fibers regarding a directional evaluation. In FiberScout [WAL+14], all fibers
are represented by two angles for a polar coordinate representation (see Figure 2.2): one angle
represents the polar angle θ from the zenith Z-direction and the other one measures the azimuth
angle φ in the XY plane as measured from the X-direction. These polar coordinates are first
plotted on a half sphere and subsequently visualized by azimuthal projection on a 2D plane in
order to generate a polar plot. To avoid overplotting in case of high feature counts, the polar plot
needs to be enhanced to a polar heatmap. For this reason, we discretized the half sphere into
segments and computed the frequency of features within each segment. These frequencies are then
color-coded and finally projected on a 2D plane using azimuthal projection. Fiber orientations
with high frequencies as well as orientation clusters are revealed and encoded in a single plot of
the complete dataset.
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Figure 2.2: Encoding orientation in a polar heatmap. (1) Conversion from features characteristics
in Cartesian coordinates to polar coordinates. (2) Representative polar heatmap of the global
fiber orientation. ©2014 IEEE. Reprinted, with permission, from [WAL+14].

Abstract/Elaborate

Abstracting or elaborating interaction techniques show less or more detail of a complex problem
[YKSJ07], which is specifically important when analyzing numerous features in 2D or 3D space.
In such settings, the occlusion of large numbers of features of interest prevents from exploring
overall structures. In case of fiber reinforced composites, respective visual analyses are used to
evaluate the layered structure as well as to analyze and explore porous areas and large pores in the
material system. A reasonable viewpoint therefore maximizes the pore overlap in the result image
so that the layered structure of the sample is revealed and clearly visible. The best-viewpoint
technique and the respective widget as presented by Reh et al. [RPK+12] falls in the category of
abstract/elaborate. The goal of this technique is to rate the quality of viewpoints on a viewing
sphere around the data volume. This is achieved by regular sampling of points on a parameterized
sphere. At each position of this sphere, a histogram is aggregated from the projection of
the segmented pore voxels on the viewing plane. These histograms are then subdivided into
three classes of critical (strongly overlapping features), borderline (partly overlapping features)
and uncritical (non overlapping features) pixels using user-specified thresholds. Based on the
contributions of critical, borderline, and uncritical histogram bars, a quality value is computed
and visualized on a spherical best-viewpoint widget. This way, the most suitable orientations are
abstracted from the respective viewpoints and either directly color-coded or represented using
cylinders on the surface of the sphere.

Reconfigure

Due to visual clutter when rendering higher numbers of objects, it is often difficult to get a sense
of how average feature shapes manifest themselves. This undertaking becomes even impossible,
when analyzing hundreds or thousands of individual objects in large datasets or if only specifically
selected objects with respect to user-defined characteristics should be considered. Reh et al.
[RGK+13] introduced a novel method of reconfiguring data for the purpose of exploring respective
average objects (Figure 2.3). Here, segmentations of the features of interest (e.g., pores, voids,
inclusions, or fibers) are detached from their spatial context and reconfigured to create MObjects
(short for mean or average objects). In order to achieve this goal, all features need to be registered
to each other based on their barycenter. We then aggregate the contributions of each feature to
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Figure 2.3: Reconfiguring spatial features using MObjects (i.e., mean objects). Right: All
individual objects of the parent MObject (1) are subdivided into cluster A (2) and B (3). The
resulting child MObjects (4 and 5) make up a MObject Set (6). Left: Concept of Radial MObject
Set visualization for the exploration of sets of MObjects in terms of (7) shape factor and (8) pore
volume. ©2013 IEEE. Reprinted, with permission, from [RGK+13].

the MObject. For this purpose, we walk through all voxels of the MObject and count, how many
of the segmented features contain the considered voxel as part of the segmented structure. This
is achieved by determining the distances of the considered voxels to their barycenters in X, Y,
Z coordinates of each segmented feature. The respective voxels of the mean object at the same
X, Y, Z distances to its barycenter are subsequently incremented. Using normalization to one,
the aggregation into a mean object may be considered as a probability volume. Areas of high
probability typically represent the center of the MObject, which means most of the segmented
features contribute to this area. The probabilities are decreasing in surrounding areas. For the
exploration of datasets with high numbers of features, the computation of a single mean object
is typically insufficient. Users are interested in MObject Sets (short for mean object sets), e.g.,
with MObjects computed at specific regions, MObjects of features with similar shapes or with a
specific volume range. To account for these needs, visualization concepts for the exploration of
MObject Sets are required. We introduced two candidate visualization techniques, one of which
presents MObject Sets in a radial layout and the other one in a parallel arrangement. Both
visualization techniques allow to further subdivide parent MObjects into sets of child MObjects
with respect to a specific characteristic (e.g., shape factor, volume, surface, position in space, etc.)
as well as into the desired number of subdivisions and ranges of each characteristic. Through
visual linking, all generated MObjects down the analysis path may be explored.

2.2 Challenge 2 & 3: vPSA, Comparative and Ensemble Visualization

Although each area is considered as a standalone topic in visualization, often visual parameter space
analysis (vPSA) is accompanied by a comparative and/or ensemble visualization. Likewise in my
field of research, these areas are strongly intertwined and therefore need to be considered together,
which is why my contributions are combined in this subsection. This combination is explained as
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follows: While vPSA integrates a systematic variation of the model input parameters in order to
generate outputs for each combination of parameters (i.e., sampling the input parameter space),
the generated outputs need to be compared [MHG10]. Furthermore, the respective relations
between inputs and outputs need to be investigated [SHB+14]. Typically, the data generated in
this process is complex and contains collections of outputs generated from respective computations
(i.e., ensemble data). Visualization can be of great help in the analysis.

The high-level related work in this area is spanning from vPSA, visual comparison and visualization
of time-oriented data, comparative visualization techniques, to visualization techniques for
ensemble data. Regarding the first topic, the reader is referred to Section 2.3 which contains
a holistic conceptual framework we introduced for vPSA. For the second area, Aigner et al.
[AMST11] discuss the visualization of time-oriented data, which requires suitable methods for
reasoning using visual analysis due to the distinct characteristics of time. Gleicher et al. [GAW+11]
focused on visual comparison for information visualization. Regarding comparative visualization
and respective techniques, the works of Gratzl et al. [GLG+13] on the visual analysis of multi-
attribute rankings, of Malik et al. [MHG10] on the comparative visualization for parameter
studies of dataset series, and of Torsney-Weir et al. [TWMSK18] on the interactive visualization
of shapes in multiple dimensions should be noted. Visualization techniques for ensemble data
received much attention in recent years. This area is best outlined by the survey of Wang et
al. [WHLS19] in terms of visualization and visual analysis of ensemble data. Notable works are
focusing on comparative 3D ensemble visualization using multi-charts as introduced by Demir et
al. [DDW14] or characterizing uncertainty in feature sets using contour boxplots for simulation
ensembles as presented by Whitaker et al. [WMK13].

My research regarding Challenges 2 and 3 comprises visual parameter space analysis and compar-
ative visualization techniques for rich XCT data ensembles originating from XCT data generation,
(feature) reconstruction, and segmentation. In the field of reconstruction and segmentation,
numerous algorithms and pipelines have been introduced for XCT data analysis. Yet, there is
no unique optimal solution that fits all analysis problems. In addition, many influencing factors
need to be considered concerning the quality of the respective results. Summarizing most of
the previously presented approaches, these are sharing the persisting issue of finding suitable
input parameters for generating reasonable outputs. In many daily data analysis operations, it
remains largely unclear, which parameter values or even which parameter ranges of an algorithm
generate suitable results. Sometimes it also remains unclear which algorithms should be preferred
over others. A comparison of the generated results is therefore mandatory in order to evaluate
the quality of the generated results and ideally, to derive optimized input parameters for new
algorithm runs. In this kind of application, we typically deal with high numbers of ensemble
members in XCT, which feature subtle differences between each other. So, we need to be able
to analyze and compare reconstruction and segmentation results from different algorithms and
pipelines. To tackle these requirements, we set up the following research questions:

• How to compare large, slightly changing data ensembles of spatial and abstract data?

• What is the relationship between the input parameter space and potential outputs of
segmentation/registration algorithms?

• What are the trade-offs among the input parameters in terms of output accuracy, perfor-
mance, and stability?

• What are the differences between features in terms of their spatial and quantitative charac-
teristics?
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• How to determine and visually encode the similarity of features?

My contributions to computer science in this area focus on vPSA, as well as the comparative
and ensemble visualization [AHRG10], [WAG+16], [FMH16], [FEM+19], [WFG+19]. We have
presented methods for visual parameter space analysis, exploring input parameter spaces
with respect to the generated outputs, specifically of different segmentation and registration
algorithms. Regarding similarity metrics for vPSA techniques, metrics are introduced in
order to determine which object matches the predefined reference best in terms of their attributes,
distances of characteristic points or overlap. Furthermore, regarding comparative visualization,
techniques have been presented to study the differences between multiple results regarding their
visual representation and their characteristics respectively. Finally, ensemble visualization
and analysis using histogram heatmaps of ensemble data as well as Dynamic Volume Lines
have been investigated. Some of these contributions are explained in the following sections. The
proposed techniques and methods have been demonstrated on real world use cases and evaluated
in respective case studies.

Similarity Metrics for vPSA

When comparing features as well as their characteristics, first a reference needs to be defined,
against which all others can be correlated. Often a ground truth reference is used for such analyses
or experiments, which is calibrated against a global reference standard for absolute comparisons.
If such ground truth is not available, arbitrary feature samples may serve as reference for relative
comparisons. In the following sections we focus on the latter case of relative comparisons and
more specifically, on similarity metrics for fibers as generated in fiber reconstruction [FEM+19].
For comparing such fibers and their characteristics, similarity metrics are required to figure out,
how fiber reconstruction results compare against each other and if a result is superior to another
one. Such similarity metrics should return zero for a perfect match (i.e., the fibers are identical)
and larger values, the less they are matching. Finally, similarity metrics should be invariant
with respect to orientation (start and end points of single fibers may be interchanged), but not
concerning scale or translation. By nature, features as well as datasets need to be considered
as rigid. Three fiber similarity metrics have been identified. These metrics are based on fiber
characteristics (1), point distances (2), and overlap (3).
Metrics of the first category measure similarity based on respective differences in terms of the
fiber characteristics (1), e.g., differences in center points (X, Y, Z-coordinates), fiber lengths, as
well as fiber directions defined by azimuth and elevation angles in a spherical coordinate system.
Likewise, additional, or different characteristics could be considered. Attributes suitable for
similarity metrics should be largely independent to account for the differences in the data. A
straightforward metric of this first category determines the Euclidean distance in an n-dimensional
space spanned by the used fiber characteristics. In the specific case of fibers and the selected
characteristics, a 6-dimensional vector integrates the characteristics of a sample, yielding a
6-dimensional space. It contains the X, Y, Z-coordinates of the center point, the fiber length, and
the azimuth and elevation angles of the fiber direction. This 6D vector serves as basis for the
computation of respective Euclidean distances to other fibers within the 6D space. Unfortunately,
as the individual fiber characteristics have different physical dimensions, they are not comparable.
A methodological clean way for this kind of metric should therefore consider a normalization
together with weighting factors for the individual characteristics.
Metrics based on point distances (2) consider critical points of the object of interest such as
start points, centers, and end points. The computed sum of the Euclidean differences between
these points serves as metric of this category. However, such a metric is not invariant towards
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orientation, i.e., fibers which are perfectly matching, but having an inverted orientation would
also end up with a high dissimilarity. To address this issue, the distances between start and end
points need to be computed twice, once regularly and once with start and end points exchanged.
Unfortunately, even with twice the computation of distances with start and end point exchanged
accordingly, such a metric remains dependent on the fiber length. More sophisticated similarity
metrics based on the squared average distances can circumvent this issue, returning a metric
purely representing the geometric distance.
Overlap based metrics (3) typically sample points in the objects to be compared in order to
evaluate their similarity, e.g., based on the Sørensen–Dice coefficient or the Jaccard index. We
introduced a similar metric, which samples arbitrary points in only one object and measures,
how many of those are contained in the other. The number of sample points contained is then
divided by the total number of samples to account for the number of samples. What needs to
be considered is the volume ratio between the two objects: a smaller object fully contained in
a larger one would otherwise return a perfect match. In addition, the object with the smaller
volume needs to be sampled and checked regarding its inclusion in the larger one, since the larger
volumes can never be fully included in smaller ones. Overlap-based metrics represent best what
users expect of a fiber dissimilarity measure, yet they are most expensive to compute.

Comparative Visualization

According to Gleicher et al. [GAW+11] there are three main approaches to compare data using
visualization: (1) juxtaposition, (2) superposition and (3) explicit encoding. Using juxtaposition
(1) a side-by-side visualization of the data is employed for the comparison. Juxtapositions typically
do not scale well with the number of datasets. Furthermore, due to the side-by-side arrangement
of the data, analyzing the differences even of only a few datasets may be a tedious and error
prone task. Often juxtapositions are therefore used as overviews of the data and accompanied
with additional visualization widgets, e.g., revealing statistics on similarity metrics. In FIAKER,
Fröhler et al. [FEM+19] employ such a concept for a cumulative list view of output results
generated by vPSA of fiber reconstruction algorithms (Figure 2.4 left image). This list view
contains: the name of the result, volumetric renderings of the dataset, aggregated and weighted
bar charts of the selected similarity metric, and histograms showing the distribution of the metric
for visual comparison. Similarly to LineUp [GLG+13], FIAKER facilitates a quantitative ranking
of the individual results with respect to the selected similarity metric. Side-by-side analysis in
the sense of juxtaposition is here mainly used for the aggregated and weighted bar charts as
well as the distribution histograms of the selected similarity metric. Volumetric renderings serve
as miniature representations in the list and can be enlarged in the detail view for an in-depth
analysis.
Comparative visualization using superposition (2) blends data over each other, which facilitates
a direct comparison of data. Starting with the negative aspects and similarly to juxtaposition,
superposition does not scale well with increasing number of datasets due to overplotting and
visual clutter. On the positive side, a superposition may amplify cognition through direct in-place
comparisons. Differences from reference to test data may immediately be revealed in the same
display space due to the blending concept. Depending on the used visualization technique and due
to transparency and color issues through blending, subtle differences in the datasets may be hidden.
Fröhler et al. [FEM+19] used superposition in their detail view. By assigning individual colors
to reference and test datasets/objects to be compared, differences are revealed for qualitative
visual comparisons. A more sophisticated method of this category as well as of explicit encoding
is explained in detail in the subsection on ensemble visualization, which is Dynamic Volume Lines
by Weissenböck et al. [WFG+19].
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Figure 2.4: Comparative visualization using FIAKER. Left: Quantitative ranking of the individual
results with respect to the selected similarity metric (1). Right: Explicit encoding of the features’
dissimilarity to the reference using colors (2). Blue encodes low dissimilarity whereas red encodes
high dissimilarity. Corresponding features with high dissimilarity in terms of overlap are selected
(3) and shown opaque in the 3D rendering (image adapted from [FEM+19]).

The third category of comparative visualization approaches is called explicit encoding (3). For
explicit encoding, similarity metrics such as differences of data values are employed and serve as
basis for visualization. Respective visualization techniques of this category thus do not directly
visualize the individual datasets or data values but rather focus on aggregated information thereof.
For this reason, explicit encoding scales best with the number of datasets as compared to the
other categories. In FIAKER, explicit encoding serves to compare datasets on the feature level.
First a reference dataset is selected. Using the metrics as explained in the previous section,
the similarity is computed feature-wise between reference and test dataset. For each feature,
the similarity is then encoded using colors mapped to the computed similarity value. Such an
encoding of similarity immediately reveals the matching quality (Figure 2.4 right image).

Ensemble Visualization and Analysis

The need of providing visual summaries for the comparison of many complex datasets is addressed
in ensemble visualization. Such visual summaries often serve as interactive overviews of the
complete ensembles and are supplemented by statistical information as presented in Ensemble-Vis
by Potter et al. [PWB+09].
The comparison of members in large ensembles is particularly hard, if the ensemble members just
slightly deviate from each other. This is the case in parameter studies of data analysis algorithms
and pipelines generating rich XCT data ensembles. In Dynamic Volume Lines by Weissenböck et
al. [WFG+19], we introduced a novel method for the interactive visual analysis and comparison
of large ensembles of volumetric datasets (Figure 2.5). The core idea of this method is based on
linearizing volumes to 1D line plots with the benefits of a high comparability and scalability. The
abscissa of these line plots holds the indices of the volumetric elements, whereas the ordinate
shows the actual values of the voxels. For volume linearization, conventional space filling curves
may be employed, such as Z-curves, the Peano curve, or the Hilbert curve. The most obvious
method is a scan line conversion, which extracts the indices and thus correlated data values line
by line and subsequently slice by slice. This technique comes with the disadvantage of large
jumps when reaching the end of one line and moving on to the start of the next (similarly as
for slices), which would highly distract in analyzing the respective linearizations. In contrast,
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Figure 2.5: Ensemble visualization using Dynamic Volume Lines. The histogram heatmap (1)
depicts sets of volumes in an overview visualization. 1D Hilbert line plots (2) serve as interactive
detailed view. Functional boxplots (3) explicitly encode the descriptive statistics. All plots
are non-linearly scaled based on the local ensemble variation. The scaling widget (4) depicts
the ensemble variation on each level of detail. ©2019 IEEE. Reprinted, with permission, from
[WFG+19].

the Hilbert space filling curve is a continuous fractal. Originally, it has been derived as variant
from the Peano space-filling curves. The Hilbert space filling curve is used in Dynamic Volume
Lines, as it allows to linearize volumes by traversing all points of a square, a cube, or more
generally, an n-dimensional hypercube, while preserving locality in the traversal and largely
avoiding jumps. Locality in this context means, that previous and next elements are typically
neighboring the considered element. For comparing higher numbers of volumes using line plots,
functional boxplots as introduced by Sun and Genton [SG11] are employed. Using functional
boxplots, line plots are aggregated by computing and encoding descriptive statistic measures such
as lower and upper whisker, the median, and the interquartile range.
A general problem which comes with any linearization technique, especially when applied to
high resolution volume data, is the generation of line plots with extensive length (e.g., volumes
with 10243 voxels return 1.073.741.824 indices; volumes with 20483 voxels return 8.589.934.592
indices), which means that the horizontal screen resolution of conventional display devices is not
sufficient. Intelligent scaling is mandatory as valuable details might be lost through constant
scaling procedures. Dynamic Volume Lines facilitate non-linear scaling by considering the maximal
local ensemble variation in terms of intensities for every Hilbert index to derive a cumulative
importance-function. The values of this importance function serve as compression factors of the
line plot and control a nonlinear mapping of the distances between the Hilbert indices on the
abscissa. The local compression factors become obvious in an interactive scaling widget, which
depicts the local ensemble variations. This way an effective use of the available screen space is
enabled and important areas (i.e., areas of high variance in the ensemble) are emphasized while
less important areas (i.e., areas of little or no variance) are compressed or removed.
Intelligent scaling of line plots by local compression helps as visualization technique to focus on
data segments of interest. In many cases this is still not enough for generating a complete overview
of all indices in the entire volume. We therefore designed interactive histogram heatmaps of the
intensity distributions as overview visualization technique in Dynamic Volume Lines, in order to
fit the complete volume into a single cumulative chart within the available screen width. For this
purpose, the horizontal axis of the line chart is subdivided into intervals of equal width. For each
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interval a histogram of intensities is computed in order to finally construct the histogram heatmap
(see Figure 2.5 (1)). In summary, the ensemble analysis is facilitated through a comprehensive
interface, which integrates brushing and linking of the histogram heatmaps, line plots, and scaling
widgets together with a spatial rendering of the original dataset indicating the selected voxels in
3D.

2.3 Grand Challenge: Visualization Theory and Modeling

Since its first dedicated conferences in the early 1990s, visualization significantly evolved as
scientific field and also its self-conception as a mature scientific discipline. This evolution was
accompanied and consolidated with state-of-the-art reports, position and white papers on its
research as well as conceptual frameworks to guide future research efforts.

The related work in terms of visualization theory and modeling is found in general taxonomies of
visualization and interaction: Shneiderman [Shn96] introduced in his task by data type taxonomy
for information visualization the visual information seeking mantra, which has been seminal for
numerous approaches in visualization. Kosara et al. [KHG03] and Yi et al. [YKSJ07] conducted
reviews of visualization systems and their interaction capabilities. Quality metrics and visual
comparisons are other very relevant concepts in their contributions to visualization theory and
modeling. Here, quality metrics for complex and high-dimensional data visualization are of
particular interest. Bertini et al. [BTK11] introduced a systematization of techniques that employ
quality metrics supporting the visual exploration of patterns in high-dimensional data. Respective
metrics are the foundation of all visual comparisons as discussed by Gleicher et al. [GAW+11].
Finally, supporting techniques used for visual parameter space analysis and visual computing in
materials science are considered as relevant. Corresponding techniques integrate visual interaction
coupled with dimensionality reduction as addressed by Sacha et al. [SZS+17]. Furthermore,
Kehrer and Hauser [KH13] studied visualization and visual analysis of multifaceted scientific data
as well as challenges arising from the heterogeneous nature of scientific data. Finally, Alsallakh et
al. [AMA+16] provide a systematic overview of visualization techniques for set relations.

My research towards contributions to visualization theory and modeling focuses on two distinct
areas, which are explained as follows: Visual parameter space analysis (vPSA) has received much at-
tention in the visualization community, e.g., in terms of image segmentation [TWSM+11], weather
forecasts [PWB+09], disaster simulation [WFR+10], and also in materials science [WAG+16]. A
state-of-the-art report is required to classify and guide research endeavors in this field. Similarly,
but more recently, the topic of visual computing in materials science emerged, which is showing
novel insights through tailored visual analysis techniques. Examples of this topic are found in
terms of research on novel battery materials [GKL+16], fiber reinforced composites [BWW+17], or
materials for fusion reactors [KJS+14]. A structured literature review will help in understanding
the body of work and thus framing future visualization research. In order to address these
requirements, the following research questions are investigated:

• What are the data and the tasks, that visualization and visual computing are used for in
materials science?

• Which visual metaphors and interaction concepts are used and why are they preferred over
others?

• How to extract a common abstract framework characterizing vPSA across domains?

• How to build up a higher-level understanding of vPSA?
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Figure 2.6: Conceptual framework for the classification of vPSA approaches regarding data
flow model, analysis tasks, and navigation strategies. vPSA data flow model abstracting vPSA
problems. ©2014 IEEE. Reprinted, with permission, from [SHB+14].

• What are the open research challenges for future research endeavors?

My contributions to computer science in the context of these research questions generate in-
depth insights into the research areas of visual parameter space analysis and visual computing
in materials science [SHB+14], [HS17]. In terms of visual parameter space analysis, a
conceptual framework as well as a unified set of definitions and terminology were derived based
on a structured literature review of design studies in this area (Figure 2.6). Concerning visual
computing in materials science, the current body of work was reviewed and classified in
order to derive the intersection areas, the high-level tasks as well as to gain insights into the
data, the visual metaphors and the interaction concepts they are employing. Some aspects of the
respective contributions are explained in the following sections.

Visual Parameter Space Analysis

In various application domains visual parameter space analysis (vPSA) has shown great potential
to support in using and validating algorithms, pipelines, and models. An application area of
vPSA on reconstruction and segmentation pipelines was presented in the previous section.
In our report on vPSA (Sedlmair et al. [SHB+14]), we hypothesized that the presented domain-
specific applications in parameter space analysis all share a common abstract framework, which
characterizes the field. Therefore, our goal was to extract a generalized conceptual framework and
provide directions on how to use it together with terminology and open research gaps. The report
is based on more than 110 potentially interesting research papers. 21 of these were classified as
highly relevant in order to illustrate our framework (see Figure 2.6).
First, a data flow model was proposed, which abstracts vPSA problems and characterizes recurring
data manipulation operations. It includes the steps of sampling of the input parameter space,
computing outputs based on the sampled inputs, deriving objective measures from outputs, and
finally predicting outputs with cheaper surrogate models. Second, a classification of navigation
strategies was presented. These navigation strategies integrate "informed-trial-and-error", which
means the model is parametrized using prior knowledge coupled with iterative refinements.
Further strategies are "local-to-global" and "global-to-local" navigation, which both require a
precomputation of samples. While the local-to-global navigation strategy starts with a specific
output in order to explore alternatives from there, global-to-local in contrast uses a global overview
and then continues the drill down to details. Finally, "steering" an ongoing data generation
process based on intermediate visualization results was identified as the fourth navigation strategy.
Regarding typical analysis tasks in vPSA we identified the following topics in the highly relevant
papers: "Optimization" tries to find the best parameters with respect to the given objectives.
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"Partitioning" identifies types of different model behaviors. The analysis task of "Fitting" derives
input parameters of the model based on actual measured data. "Outlier" detection seeks special
samples. Ultimately, "uncertainty" and "sensitivity" determine the output’s reliability as well as
variations of outputs with respect to changes of the inputs.

Visual Computing in Materials Science

Recent achievements regarding high resolution data acquisition and visual computing enabled
materials analysis to shift from plain imaging to detailed characterizations and traceable metrology.
Similarly, precise material modeling and the ever-increasing computational power allows for
detailed simulations of novel material systems. Furthermore, advanced manufacturing technologies
paved the way towards the fabrication of tailored, lot-size-one materials and components.
In all these areas of materials science, visual computing is currently more important than ever.
Visual computing allows to generate fundamentally new insights for the understanding, the
discovery, the design, and the use of novel material systems, such as the discovery of novel battery
materials [GKL+16] or the tailored design of composite materials [BWW+17]. A multitude
of different phenomena may now be studied, at various scales, dimensions, or using different
modalities.
In our state-of-the-art report on visual computing in materials science (Heinzl and Stappen
[HS17]) the proximity of both fields, materials science and visual computing, is outlined. Starting
with the definition of these fields, we systematically reviewed 241 potentially interesting research
papers and based our findings on 88 papers which were classified as highly relevant. First,
we investigated material systems for which visual computing is helpful. We found that visual
computing is particularly beneficial in research on complex and advanced materials, such as
composites, polymers, non-metal inorganic, biological or biomedical materials. A closer look
at the tasks of visual computing in these areas revealed that especially the visual analysis of
simulated data, the visual analysis of stress and deformation, the damage and risk analysis
as well as the uncertainty quantification and visualization are frequently found and of great
importance. Our study on data generation and data types revealed that in a growing number
of cases, multi-modal, multi-dimensional, and multi-scale approaches are employed, invoking
additional challenges regarding the aggregation, analysis, and exploration of heterogeneous data.
Regarding the visual metaphors, mostly visual representations for spatial, for spatio-temporal
as well as quantitative and derived data were required. These were accompanied by interaction
techniques such as explore and reconfigure, linking and brushing, focus and context, and filtering.
Finally, open high-level and low-level challenges were identified for future research.

2.4 open_iA

All the introduced visualization and analysis techniques in course of this habilitation thesis were
implemented in open_iA [FWS+19], an open-source platform for visual analysis and processing of
volumetric datasets, with a special focus on rich XCT data. The original concept of this framework
dates back to 2009, as an attempt to integrate and consolidate the software engineering lessons
learned during my PhD. open_iA is the result of (re-)structuring, integrating, and unifying all
developments of my group in a common, reusable and platform independent software framework.
This framework is implemented in C++ and builds upon Qt [Com21], a toolkit for graphical user
interfaces and cross-platform applications, on VTK [Kit21c], a software system for manipulating
and displaying scientific data, and finally ITK [Kit21b], a library for the analysis, processing,
segmentation, and registration of scientific images. It is customizable through the cmake [Kit21a]
build system and highly extensible through templates and modules, which may range from simple
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image processing filters to highly sophisticated and fully integrated analysis and visualization
tools. Figure 2.1 shows "FiberScout" as an exemplary module of open_iA. Its characteristics make
the open_iA framework an ideal platform for rapidly developing novel visualization techniques
and research prototypes for 2D, 3D and high dimensional data. Throughout the development
of the framework, special attention was paid to advancing research prototypes from papers to
ready-to-use software components, primarily for internal but also external collaborators. This
extra work was worth the time and efforts on a longer perspective for our in house users and also
to attract new partners from industry and academia regarding novel concepts and ideas. open_iA
is the basis for all my running projects as well as all my scientific and industrial collaborations. In
June 2016 open_iA was finally made available as open source on github [Wel21], which allowed to
spark new collaborations in smaller student projects and also for larger industrial and academic
activities. With its recent upgrades in terms of ONNX [Fou21], an open format to represent and
integrate machine learning models, as well as OpenVR [Val21] for accessing VR hardware, the
technological foundation of open_iA is set for future perspectives.

2.5 Future Perspectives

Materials science has shown a significant impact on our lives through the development of more
durable and more economic, yet safer, healthier, environmentally friendlier and sustainable
materials. Visual computing, and especially visualization and analysis of XCT, takes a large
portion of these achievements. Some of the techniques introduced in this thesis have pioneered
visual computing based materials science through the analysis and visualization of rich XCT data.
But still there is a large number of open research questions yet to be answered. In the following
list, the five most imminent research questions are summarized:

1. How can visualization guide future analyses of rich XCT data? For future rich
XCT data analysis, we have to make sure, that our systems and tools indicate errors and
identify wrongly used algorithms or parametrizations (i.e., "visual debugging"). We need to
investigate if and how our methods and techniques can actively assist users throughout the
visual analysis process. The exploitation of concepts such as guidance and knowledge-driven
exploration will be of utmost importance in this area. Furthermore, we need to investigate,
if current research trends such as immersive analytics, collaborative analytics, or cross
virtuality analytics can have a substantial impact on guiding XCT data analysis or if they
rather hinder analysis processes.

2. How can visualization ensure the interpretability of rich XCT data despite
the increasing complexity in terms of data and analysis pipelines? Due to the
increasing volume, velocity, veracity, and variety of rich XCT data, methods are required,
which abstract rich XCT data in meaningful and easy to understand visual metaphors. For
example, topology analysis can help in this effort to reveal complex internal structures such
as crack networks. Yet, at the same time we need to ensure the interpretability of the
derived visual metaphors in order to safeguard decision making processes. In addition, also
novel analysis concepts such as machine learning (ML) need to be considered. Although ML
is often helpful to reduce complexity or approximate models, respective techniques must be
accompanied by visual tools to support the interpretability of ML and ML outputs.

3. How can we balance automation vs. interactive visual analysis of rich XCT
data in order to focus human expertise on areas where is really required? An
automation of data analysis tasks can be of great help to deal with the data’s ever-increasing
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complexity. Using automation, ambiguous and unclear areas in rich XCT data can be
isolated, in order to make use of human knowledge and expertise in these areas. Moreover,
many practices continue to require “the human in the loop” for decision making. Future
tools should therefore feature smart defaults, but allow the user to explore, navigate and
possibly refine data.

4. For which tasks of rich XCT data analysis is a transition from interactive visual
analysis to interactive steering beneficial? Future applications of rich XCT data
analysis will not only visualize the data with its corresponding reliability or uncertainty
budgets. Methods will integrate predictive capabilities such as where to sample next or how
to optimize parameters. We need to analyze if and for which scenarios interactive steering
is helpful.

5. Which specialization steps are necessary for interactive visualization to account
for increasing data volumes and velocity in XCT? XCT is a true big data problem.
Many applications require a specialization of currently existing algorithms, pipelines, and
techniques, especially when transitioning to inline XCT inspections. Yet, current techniques,
which are originally designed for batch processing, need to be re-engineered to allow for
interactive procedures, e.g., in terms of trend analysis, uncertainty or sensitivity analysis.

Following these questions, there are new research directions in visual analysis of rich XCT data,
which have not been tackled in depth or at all. Some of these directions I target to address in my
future research:

Topology analysis and visualization
For rich XCT data ensembles, a data-driven approach based on the structural features of the
target dataset is essential for an effective visualization. Aside features of interest, also their
topological structure reveals interesting information about the materials performance, aging
status, and damage conditions. Topology analysis is an effective means for addressing these issues
in scientific applications. The topology of structures in materials science applications will be of
primary interest, e.g., for analyzing pore or crack networks, permeability, or electric or thermal
conductibility. Meaningful and intuitive visualization techniques are required in terms of topology
together with critical points, such as sources, sinks, or saddles. In addition to visualization also
an empirical analysis regarding persistency is important, as topological analyses of real-world
datasets extract many critical points due to noise or artefacts. Such minor critical points should
be eliminated as they might hide an important global structure. The focus here will be on
strategies to evaluate their importance and methods to reduce them effectively.

Fully integrated visualization pipelines
The tailored, fully integrated visual analysis of rich XCT data is of big interest. Due to the
complexity and diversity of respective applications and analysis tasks, only very few approaches
have been presented. Related thereto are general challenges in terms of designing, developing, and
deploying scalable solutions for the quantification, exploration, analysis, and visualization of rich
data. Features, characteristics, topologies as well as aggregations thereof need to be extracted
from rich XCT data in spatial, temporal, or even higher dimensions, for a single or a multitude of
samples. Two upcoming areas are of particular interest for future visualization pipelines which
are machine learning (ML) and immersive analytics (IA). First, ML and more specifically deep
convolutional neural networks (CNNs) proved to be able to identify and classify objects with
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very high probabilities in various application areas. Various approaches have successfully applied
deep CNNs, e.g., for segmentation, feature extraction, or reconstruction of XCT data. The target
here is to find out, how visual computing in materials science can profit from ML concepts.
In terms of feature extraction and quantification, enabling transfer learning between material
systems could help in reducing training efforts. ML could be also employed for suggesting visual
metaphors for novel data analysis concepts based on analysis task or data. Second, the benefits
of immersive analytics (IA) for analyzing rich XCT data need to be evaluated. We need to
answer, how immersive analytics can substantially support in terms of visual data analysis and
exploration using novel interaction concepts and full immersion with our data. We have to clarify,
if cross-virtuality analytics (XVA) is beneficial for rich XCT data. Cross-virtuality analytics in
this sense refers to collaborative analyses along the reality-virtuality continuum as defined by
Milgram et al. [MTUK95]. For IA and XVA, comparative and ensemble visualization techniques
need to be advanced to ensure their applicability. In all our considerations we finally have to take
into account, that more complex metrics for more complex data typically lead to more complex
visualization techniques and steeper learning curves.

Interpretability and decision-making using visualization
Advanced material analysis and simulation coupled with novel and tailored visualization and
visual analysis techniques, features the potential to address upcoming challenges in terms of
understanding, discovery, design, and use of novel material systems. For example, advances in ML
are allowing for fast approximations of complex phenomena. ML turned out to be particularly
helpful in feature reconstruction, classification, or complexity reduction. However, as we learned
from our own experiments, ML is only as good as its training. Without appropriate and careful
training using suitable and sufficient training data, ML may generate erroneous or incomplete
models, which can induce wrong results and decisions. The research questions to be answered here
are how to safeguard appropriate outputs using visualization and how to explain the generated
outputs. Uncertainty and sensitivity analysis and visualization will play a major role in this effort.
New techniques are required to understand ML-based XCT data analysis together with analyzing
the uncertainty prevalent in the generated results as well as the sensitivity regarding subtle
changes of inputs or training parameters. Decision making using visualization of rich XCT data
requires new visual metaphors. Extending on vPSA, sensitivity and uncertainty analysis, also
the decisions taken and respective risks thereof need to be considered. A detailed understanding
of the parameter space of data analysis pipelines, the sensitivity of inputs with respect to the
generated outputs, as well as the uncertainty in the generated data is paramount for decision
making. We need to answer the research question of how to support decisions based on rich
XCT data by identifying and evaluating the risks contained in these decisions. For example,
an optimal candidate material may be subjected to uncontrolled environmental conditions in
production, such as increased humidity or temperature, and yield deteriorated specs. If other
candidates are existing with similar specs, showing a more stable behavior and therefore a lower
risk, these should possibly be preferred. In summary, as complexity and richness of the material
specifications and respective analysis data increases, the topics of uncertainty, sensitivity and risk
analysis will become indispensable components of all visual analysis solutions for decision making
in materials science.

2.6 Authorship Statement

The following statement provides a concise overview on the author’s contributions to the publica-
tions included in this habilitation thesis. These publications represent a snapshot of the research,
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which has been conducted and published in a collaborative effort by the author together with
other researchers between 2010 and 2020. Collaborations on the individual publications are highly
characteristic for the scientific work in the visualization community. Single-author publications
are exceptional and thus found only in very rare cases in our community. In Table 2.1ff, the
contributions of the author to the respective publications are indicated. The contributions are clas-
sified based on CRediT (Contributor Roles Taxonomy), a high-level classification scheme
regarding the different roles for publishing research as presented by Brandt et al. [BAA+15].
Significant contributions are indicated in bold and generated major input to fundamental parts
of the work. Other contributions either provide input to well-defined smaller aspects or to parts
where other co-authors played the leading role. These contributions are indicated in regular font.
For most of the selected publications in this thesis I acted as the last author, with the respective
PhD students I (co-)supervise being the first author. The two papers, which are not following
this scheme, are those which I coauthored with senior researchers from different universities
and research institutes. All papers have been published in projects, that were granted to me
as principal investigator. They are reprinted in this thesis in the form they were accepted or
published, following the publishers’ policy for reproducing author’s work.

Publications Contributions

Bernhard Fröhler, Tim Elberfeld, Torsten Möller,
Hans-Christian Hege, Johannes Weissenböck, Jan De
Beenhouwer, Jan Sijbers, Johann Kastner, and Christoph
Heinzl. A visual tool for the analysis of algorithms for
tomographic fiber reconstruction in materials science. Computer
Graphics Forum, 38(3):273–283, 2019. doi:10.1111/cgf.13688

Conceptualization
Methodology
Software
Validation
Resources
Writing - Original Draft
Writing - Review & Editing
Visualization
Supervision
Project administration
Funding acquisition

Table 2.1: Contribution statement 1/3
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Publications Contributions

Johannes Weissenböck, Bernhard Fröhler, Eduard Gröller,
Johann Kastner, and Christoph Heinzl. Dynamic Volume
Lines: Visual comparison of 3D volumes through space-filling
curves. IEEE Transactions on Visualization and Computer
Graphics, 25(1):1040–1049, 2019.
doi:10.1109/TVCG.2018.2864510

Conceptualization
Methodology
Software
Validation
Resources
Writing - Original Draft
Writing - Review & Editing
Visualization
Supervision
Project administration
Funding acquisition

Christoph Heinzl, Stefan Stappen. STAR: Visual Computing
in Materials Science. Computer Graphics Forum 36(3):647–666,
2017. doi:10.1111/cgf.13214

Conceptualization
Methodology
Investigation
Data Curation
Writing - Original Draft
Writing - Review & Editing
Visualization
Supervision
Project administration
Funding acquisition

Arindam Bhattacharya, Johannes Weissenböck, Rephael
Wenger, Artem Amirkhanov, Johann Kastner, Christoph
Heinzl. Interactive Exploration and Visualization using
MetaTracts extracted from Carbon Fiber Reinforced
Composites. IEEE Transactions on Visualization and Computer
Graphics, vol. 23(8):1988-2002, 2017.
doi:10.1109/TVCG.2016.2582158

Conceptualization
Methodology
Software
Validation
Resources
Writing - Original Draft
Writing - Review & Editing
Visualization
Supervision
Project administration
Funding acquisition

Bernhard Fröhler, Torsten Möller, and Christoph Heinzl.
GEMSe: Visualization-guided exploration of multi-channel
segmentation algorithms. Computer Graphics Forum,
35(3):191–200, 2016. doi:10.1111/cgf.12895

Conceptualization
Methodology
Software
Validation
Resources
Writing - Original Draft
Writing - Review & Editing
Visualization
Supervision
Project administration
Funding acquisition

Table 2.2: Contribution statement 2/3
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Johannes Weissenböck, Artem Amirkhanov, Eduard Gröller,
Johann Kastner, and Christoph Heinzl. PorosityAnalyzer:
Visual analysis and evaluation of segmentation pipelines to
determine the porosity in fiber-reinforced polymers. In IEEE
Conference on Visual Analytics Science and Technology (VAST),
pages 101–110, 2016. doi:10.1109/VAST.2016.7883516

Conceptualization
Methodology
Software
Validation
Resources
Writing - Original Draft
Writing - Review & Editing
Visualization
Supervision
Project administration
Funding acquisition

Michael Sedlmair, Christoph Heinzl, Stefan Bruckner, Harald
Piringer, and Torsten Möller. Visual Parameter Space Analysis:
A Conceptual Framework. IEEE Transactions on Visualization
and Computer Graphics, 20(12):2161-2170, 2014.
doi:10.1109/TVCG.2014.2346321

Conceptualization
Methodology
Investigation
Data Curation
Writing - Original Draft
Writing - Review & Editing
Visualization
Funding acquisition

Johannes Weissenböck, Artem Amirkhanov, Weimin Li,
Andreas Reh, Alexander Amirkhanov, Eduard Gröller, Johann
Kastner, and Christoph Heinzl. FiberScout: An interactive
tool for exploring and analyzing fiber reinforced polymers. In
2014 IEEE Pacific Visualization Symposium, pages 153–160,
March 2014. doi:10.1109/PacificVis.2014.52

Conceptualization
Methodology
Software
Validation
Resources
Writing - Original Draft
Writing - Review & Editing
Visualization
Supervision
Project administration
Funding acquisition

Andreas Reh, Christian Gusenbauer, Johann Kastner, Eduard
Gröller, and Christoph Heinzl. MObjects–A Novel Method
for the Visualization and Interactive Exploration of Defects in
Industrial XCT Data. IEEE Transactions on Visualization and
Computer Graphics, 19(12):2906–2915, 2013.
doi:10.1109/TVCG.2013.177

Conceptualization
Methodology
Software
Validation
Resources
Writing - Original Draft
Writing - Review & Editing
Visualization
Supervision
Project administration
Funding acquisition
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MObjects—A Novel Method for the Visualization and Interactive
Exploration of Defects in Industrial XCT Data

Andreas Reh, Christian Gusenbauer, Johann Kastner, Eduard Gröller, and Christoph Heinzl

Fig. 1. From a set of individual objects (I) a MObject is calculated. MObjects are visualized by transfer functions based on the
probability of each voxel of belonging to the MObject (1 and 2). The MObject cut-through (C) shows areas with high probability (H) in
the center. Medium (M) and low (L) probabilities represent the uncertainty cloud (U) showing outliers of individual objects.

Abstract—This paper describes an advanced visualization method for the analysis of defects in industrial 3D X-Ray Computed
Tomography (XCT) data. We present a novel way to explore a high number of individual objects in a dataset, e.g., pores, inclusions,
particles, fibers, and cracks demonstrated on the special application area of pore extraction in carbon fiber reinforced polymers
(CFRP). After calculating the individual object properties volume, dimensions and shape factors, all objects are clustered into a mean
object (MObject). The resulting MObject parameter space can be explored interactively. To do so, we introduce the visualization of
mean object sets (MObject Sets) in a radial and a parallel arrangement. Each MObject may be split up into sub-classes by selecting a
specific property, e.g., volume or shape factor, and the desired number of classes. Applying this interactive selection iteratively leads
to the intended classifications and visualizations of MObjects along the selected analysis path. Hereby the given different scaling
factors of the MObjects down the analysis path are visualized through a visual linking approach. Furthermore the representative
MObjects are exported as volumetric datasets to serve as input for successive calculations and simulations. In the field of porosity
determination in CFRP non-destructive testing practitioners use representative MObjects to improve ultrasonic calibration curves.
Representative pores also serve as input for heat conduction simulations in active thermography. For a fast overview of the pore
properties in a dataset we propose a local MObjects visualization in combination with a color-coded homogeneity visualization of
cells. The advantages of our novel approach are demonstrated using real world CFRP specimens. The results were evaluated
through a questionnaire in order to determine the practicality of the MObjects visualization as a supportive tool for domain specialists.

Index Terms—3D X-ray computed tomography, carbon fiber reinforced polymers, porosity, parameter space analysis, MObjects

1 INTRODUCTION AND MOTIVATION

Industrial research is continuously increasing efforts in designing new-
tailored light-weight materials in order to meet the high demands re-
garding efficiency, environment, safety as well as comfort. Especially
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in the aeronautics industry a high demand for advanced composite ma-
terials is observable. Aircrafts of the future will be made of more
than 50 % of these novel composite materials. Carbon fiber reinforced
polymers (CFRPs) are currently considered as the most promising can-
didate since this material is outperforming the majority of conven-
tional materials. As a result of the manufacturing process this material
tends to have pores inside [25]. Pores in the material are typically in-
clusions of air. As they have an impact on the mechanical properties of
the component, their determination and evaluation is an important task
in quality control and a particular challenge for non-destructive testing
(NDT) practitioners. Besides the characterization of individual pores,
their spatial distribution in the tested component is a relevant factor.
For example, a high concentration of pores in certain regions leads to
different material characteristics as compared to a homogenous distri-
bution of the pores.

The current state-of-the-art method for non-destructive porosity de-
termination in aeronautics is ultrasonic testing. Characterization using
ultrasonics is required by various aeronautic and automotive standards.
The porosity is estimated from ultrasonic velocity and attenuation of
sound waves using a calibration curve which is based on the contained
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Fig. 2. Illustration of the MObject calculation showing pores of a CFRP
dataset. (1) First the individual pores are spatially aligned according to
their centers. (2) Second the MObject is calculated by summing up the
voxels.

pores. Although the pores and their shape factors are strongly re-
lated to the manufacturing process, the same calibration curve is used
for components from diverse manufacturing operations. This leads
to inaccurate results. Active thermography is a complementary NDT
method for porosity determination in CFRP components. For active
thermography heat is induced with flashes of light and the propagation
of the surface temperature is measured. As the heat propagation de-
pends on the thermal diffusivity of the component, the heat conduction
model is fundamental for the accuracy of the generated results [20].
The model is based on simulations, in which the sizes and shape fac-
tors of the pores play an important role, although they are not exactly
known.

To avoid these drawbacks and to support NDT practitioners, we
apply 3D X-Ray Computed Tomography (XCT). It is an NDT method
with an increasing importance in the field of aeronautics. With XCT
the tested component is placed on a rotary plate between an X-ray
source and a detector. For a series of angular positions, 2D projection
images are acquired and a 3D volumetric dataset is reconstructed. Due
to the high spatial resolution, industrial XCT allows to detect a high
number of pores (individual objects) inside. At first glance these pores
have similar shapes and it is a difficult and tedious task to evaluate the
data by identifying representative structures of interest in the dataset.

As a solution to this problem we introduce mean objects (MOb-
jects). The pores in the 3D dataset are examined individually (see Fig-
ure 2 (1)). To compute the MObject, the pores are spatially aligned ac-
cording to their centers. The value of each voxel in the MObject is the
sum of individual pores that overlap it (see Figure 2 (2)). By normal-
izing the MObject to 1, each voxel holds the probability of belonging
to the MObject. Figure 1 illustrates our novel visualization approach
showing individual objects (I) and the visualization with an illustrative
MObject cut-through (C). A MObject is visualized by transfer func-
tions based on the probability of each voxel in the MObject dataset (1
and 2). Areas with a high probability (H) represent the MObject core
in the center. The surrounding medium and low probabilities (M and
L) represent an uncertainty cloud (U) and correspond to outliers of in-
dividual objects. The calculated MObject of the whole dataset is then
explored by a decomposition using interactive selection. The resulting
set of MObjects is called MObject Set. With the help of the MObject
Sets it is now possible to find representative MObjects in the dataset.
For our specific application of CFRP analysis representative MObjects
are structures of interest in the dataset. For example representative
mean pores in a CFRP component are nodular and disc-shaped pores
within the epoxy resin as well as long and thin micro pores in the fiber
bundles. Although our approach can be used for all kinds of defects
in material sciences, e.g., pores, inclusions, particles, fibers and even
cracks, we will focus in this work on the evaluation of pores.

2 TASKS AND CONTRIBUTIONS

The previously introduced problem descriptions and their demands re-
garding material sciences lead us to the following tasks for the visual-
ization and exploration of MObjects:

• MObjects Visualization (Task 1): A non-destructive testing
(NDT) practitioner analyses visual representations of features or
objects of interest inside a CFRP dataset regarding their individ-
ual properties, e.g., volume, dimensions, or shape factors. Due
to the high number of pores the calculation and visualization of
MObjects is the most important task.

• Local MObjects Visualization (Task 2): Besides individual
pore properties, the spatial distribution of the pores is an im-
portant property of the investigated specimen. Non-destructive
testing practitioners need a fast overview of the pore homogene-
ity. To achieve this goal, the dataset is divided into cells. For
each cell a local MObject is calculated and visualized.

• MObjects Exploration (Task 3): Ultrasonic testing practition-
ers and active thermography experts are searching for MObjects
as representatives of the structures of interest in the dataset. The
MObjects are needed to improve the ultrasonic calibration curve
and the simulations of the thermal diffusivity model. Therefore
the MObject of a CFRP dataset is explored interactively.

In this paper we employ XCT to determine and visualize pores in
CFRP specimens. MObjects of the segmented pores are calculated
and visualized. To accomplish Task 1 - Task 3 visualization methods
for the interactive exploration of MObjects are introduced. The main
contributions of our work are:

• MObjects Calculation and Visualization: We calculate MOb-
jects by clustering a set of individual pores. As the calculation
produces probabilities for each voxel, we visualize an uncer-
tainty cloud using transfer functions.

• Homogeneity Visualization using Local MObjects: For a fast
homogeneity overview of the specimen we divide the dataset into
regular sub-volumes. For each of these volumes we calculate a
local MObject. We extend the homogeneity visualization with a
color-coding of the sub-volumes regarding their individual prop-
erties.

• Interactive Exploration of MObjects: For the interactive ex-
ploration and visualization of pores in a CFRP dataset, we in-
troduce two methods. In a beginners mode the MObjects are
arranged in a radial design. All possible combinations of the
user-defined properties are calculated and visualized. In the ex-
pert mode, the MObjects are arranged in parallel. They are con-
structed interactively from one level to the next in order to allow
an in-depth exploration of the dataset. The resulting representa-
tive MObjects can be exported as volumetric datasets to serve as
input for ultrasonic calibrations and active thermography simu-
lations. Each voxel holds the probability of the MObject mem-
bership.

3 RELATED WORK

In our previous work [23] we introduced a drill-down approach to ex-
plore pores in a CFRP dataset. The main focus of this work was the
determination of the quantitative porosity and the comparison with ex-
isting reference methods like ultrasonic testing, active thermography,
and acid digestion. A fast porosity overview with the porosity maps
visualization and an individual pore visualization with parallel coordi-
nates was presented and showed satisfying results. However porosity
in CFRP is still an interesting and important topic of research. Due to
the possible high number of pores in the datasets, occlusions of pores
may lead to evaluation problems using an individual pore visualiza-
tion. We found out that analyzing the pores individually is insufficient
in certain evaluation scenarios, e.g., if the mean characteristics of the
pores are needed. In this paper, we developed the new MObjects ap-
proach which gives the user a fast visual overview of the average pores
in the dataset. In the following sections we review the related work for
our MObjects visualization and exploration pipeline.
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3.1 Segmentation
The segmentation of the individual pores is an essential task. A survey
on thresholding techniques by Sezgin and Sankur [24] shows the wide
range of approaches and applications. All of these methods assign an
object membership based on a density threshold, where no neighbor-
hood information is taken into account. As we showed in our previous
work [23] Otsu’s thresholding technique [21] leads to satisfying re-
sults for industrial XCT data of CFRP specimens. It is an automatic
threshold-selection method for bimodal histograms. The histogram is
divided into two classes minimizing the intra-class variance and max-
imizing the inter-class variance. Thus the separability of the resulting
classes in gray levels is maximized. As segmentation techniques are
exchangeable in the presented workflow and not considered as core of
this work, this area is not considered in more detail.

3.2 Parameter Space Analysis
The resulting set of segmented pores together with their properties like
the volume, dimensions, and shape factors make up a new parameter
space, which has to be explored (MObjects Exploration - Task 3). A
broad range of methods and applications for parameter space analysis
exists. Design galleries by Marks et al. [19] present an interface with
an automatically generated selection of different graphics or anima-
tions. These can be produced by varying the input parameters, e.g.,
opacity and color transfer functions for volume rendering. Ma [17]
introduces Image Graphs, where the nodes in the graphs show result
images. Each edge depicts the change of the rendering parameters be-
tween its connected nodes. Changes in the rendering parameters prop-
agate through the graph. Bruckner and Möller [7] developed a system
to assist graphics artists in generating special effects, e.g., smoke or ex-
plosions. Their visual exploration approach of the parameter spaces al-
lows the user to find the appropriate parameters for the desired results.
Torsney-Weir et al. [26] introduced Tuner, a system for parameter find-
ing in image segmentation. Tuner systematically explores the parame-
ter space in two stages. After sampling the parameter space, a statisti-
cal model for the estimation of the segmentation algorithm’s response
is applied. Based on this information the user can navigate through the
parameter space to find areas with high response values. Amirkhanov
et al. [2] presented a tool for the visual optimality and stability anal-
ysis of 3DCT specimen placements. For parameter space analysis a
stability widget based on penetration-length calculation, radon-space
analysis as well as placement-stability analysis is used. Another ap-
proach by Bruckner et al. [8] is realized in the BrainGazer software.
The system is used for the exploration and analysis of neural circuits.
Visual queries based on semantic and spatial relationships are applied
to a database of fruit-fly brains. Berger et al. [5] presented an interac-
tive approach to analyze a sampled parameter space. Other interesting
papers concerning our work are available as well [28], [27] and [3].

3.3 Clustering
By calculating MObjects, we identify and group similar individual
objects with respect to one of their properties. Therefore a cluster
algorithm is used. Xu published a detailed survey on clustering algo-
rithms [29]. We let the user decide on the number of clusters, e.g., a
norm specifies the number of partitions which have to be made in an
evaluation scenario. As the clustering algorithm is easily replaceable,
simple k-means is taken for our approach of clustering individual ob-
jects. Clustering itself is considered to be out of scope for this work
and is not discussed in more detail.

3.4 Hierarchical Visualization
The calculation of MObjects is based on the composition and de-
composition of mean and individual objects. This leads us to hier-
archical visualizations for the interactive exploration of the MObjects
(MObjects Exploration - Task 3). A combination of hierarchy visu-
alization and scientific visualization was presented by Balabanian et
al. [4]. Their method integrates visualizations for hierarchically orga-
nized volumetric datasets. A graph shows the hierarchy and the nodes
display the corresponding 3D volumetric data. Brambilla et al. [6]
introduced a hierarchical splitting scheme for the analysis of integral

surfaces. At each hierarchy level the cuts are chosen according to a
surface complexity metric. Ip et al. [13] partition the histogram of a
volumetric dataset into an exploration hierarchy using a normalized-
cut multilevel segmentation approach. Inspired by these techniques,
we introduce our MObject Set visualization. After a decomposition of
the dataset’s MObject, the user is able to explore the data in a graph,
where the nodes show 3D representations of the MObjects.

3.5 Uncertainty Visualization
We calculate a new volumetric MObject dataset by aggregating indi-
vidual objects of one cluster. Each voxel holds the probability of be-
longing to the newly generated MObject. These probabilities as well
as the regions with elevated uncertainty are visualized (MObjects Visu-
alization - Task 1). Kniss et al. [14] present an approach for the interac-
tive exploration of uncertainty including a risk and decision analysis.
They render the results of the risk analysis into a unified probabilistic
data space. As MObjects are aggregated from all considered individ-
ual objects, the approach by Kniss et al. [14] is not suitable for our
visualization. Point-based probabilistic surfaces were introduced by
Grigoryan and Rheingans [10]. They visualize surfaces with uncer-
tainties using points as display primitives. Although their approach
is useful for visualizing uncertainty on surfaces, we can not apply it
to our data. Fout and Ma [9] present fuzzy volume rendering. By
computing the posteriori uncertainty they provide a verifiable volume
rendering. Heinzl et al. [11] compute a probability volume of multi-
material components using a statistical analysis. Similarly we provide
insight into the MObjects’ data to show the core and the outliers. We
also use transfer functions emphasizing a user-defined border of prob-
ability. They are suitable for visualizing the a priori-based uncertainty
of an MObject.

3.6 Comparative Visualization
The issue of visualizing the pore homogeneity in the dataset (Local
MObjects Visualization - Task 2) leads us to comparative visualization.
Malik et al. [18] refer to a wide range of comparative visualization
approaches. Additionally they propose a base tile pattern for a multi-
image view for comparative visualization, which is an extension of
the checkerboard-pattern approach and attribute blocks. Malik et al.
compare 2D slices of volumetric datasets with different measurement
parameters. Ahrens et al. [1] visualize differences between scientific
simulations. These methods are not applicable to our segmented pores
data. We divide the dataset into cells and calculate local MObjects for
each cell. Furthermore we add a homogeneity visualization, where we
color-code the cells based on the deviation of the local average from
the global average.

3.7 Visualization of Multivariate Data
Parallel coordinates introduced by Inselberg [12] are a common visual-
ization approach for displaying and filtering multivariate data. Kosara
et al. [15] extended parallel coordinates and presented parallel sets for
dealing with categorical data. Instead of individual data points, they
show data frequencies between the axes and visualize the relations be-
tween categories. StratomeX by Lex et al. [16] was inspired by parallel
sets, where datasets of genomic data are represented as columns and
subtypes as bricks in the columns. Our MObject Set visualization in
parallel alignment was inspired by these techniques (MObjects Explo-
ration - Task 3). Parallel coordinates can serve as classifiers for the
selection of individual pores and parallel sets share the idea of clus-
tered objects. Due to the usage of categories, both approaches are not
applicable to volumetric datasets. They do not visualize the spatial
relationship between as well as the appearance of the objects.

4 MOBJECTS VISUALIZATION AND EXPLORATION PIPELINE

In our work we want to identify representative structures of interest
in an XCT dataset, e.g., pores in a CFRP component. We propose a
pipeline for the visualization and interactive exploration of MObjects
which is illustrated in Figure 3. In the data acquisition stage (1) 3D X-
Ray Computed Tomography (XCT) data is generated (see Section 4.1).
On the resulting volumetric dataset pre-processing steps (2), described
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Fig. 3. Pipeline for the visualization and interactive exploration of MObjects in a dataset. The main pipeline is colored in blue, whereas the detailed
steps are shown in gray.

in Section 4.2, are performed to calculate the resulting global MObject
of the dataset. This MObject is considered as mean pore and represents
the aggregation of all pores in the component. For further visualization
of the MObject we propose two methods. In our first approach, the
global MObjects visualization (3), the global MObject serves as input
for further exploration. For a fast overview of the dataset we suggest a
local MObjects visualization (4). The dataset is divided into cells and
for each cell a local MObject is calculated and shown in combination
with a color-coded homogeneity visualization. Through interactive
selection (5) the subsequent exploration starts with one of the local
MObjects instead of the global one.

All the individual objects in the MObject of interest are then clus-
tered in the MObject Set calculation (6). The parent MObject is further
subdivided into new child MObjects based on one of their calculated
properties. For example the parent MObject is classified into two child
MObjects based on the shape factors of the pores. The first MObject
only contains nodular pores, whereas the second one consists of long
and thin pores. The user is then able to interact with the resulting
MObject Set visualization (7). Through visual linking (8) or interac-
tive selection (9) an iterative calculation and visualization of the MOb-
ject Sets will be triggered upon each major change in the classification.
By selecting a MObject (A) in a MObject Set (B) a new MObject Set
(C) consisting of new child MObjects can be calculated from the se-
lected parent MObject (A).

4.1 Data Acquisition

In this work, we use carbon fiber reinforced polymers (CFRP) speci-
mens made of preimpregnated carbon fibers and epoxy resin. For the
investigations plates with a size of 17 x 20 x 1 mm3 were used. The
voxel size of the datasets was 10.5 µm. The XCT scans were per-
formed on a GE Phoenix|xray nanotom XCT system with a 180 kV
nano focus tube. A tube voltage of 60 kV, a measurement current
of 320 µA, and 500 ms integration time at the detector were used as
scan parameters. Over-segmentation in the middle of the specimens
may occur due to gray value modifications caused by beam hardening
during the measurement. Therefore a beam hardening correction was
applied during the reconstruction.

4.2 Pre-processing
Due to ambient noise in the scanned datasets, we apply anisotropic
diffusion as described by Perona and Malik [22] for filtering the data.
Anisotropic diffusion smoothes homogenous regions while preserving
the edges. We use five iterations with a conductance of one and a
time step of 0.0625 seconds. The segmentation of pores is done with
the automatic threshold selection method for bimodal histograms by
Otsu [21]. For the individual property calculation the objects are la-
beled after the segmentation by a connected-components filter using
26-connectivity neighborhoods. With the labeled objects we proceed
through an individual property calculation stage which is the basis for
our MObjects determination. A pore consists of a set of voxels within
a regular volumetric grid. To enable interactive exploration and clas-
sification of objects the following properties for each individual pore
are calculated:

• Pore volume Vi: The volume Vi of a pore i is the sum of all
voxels in the dataset with the same label.

• Dimensions ai,bi,ci: To calculate the extent of the pore along
the x, y and z coordinate axes we perform the calculation on the
discretized pore. For the extent along the x axis we determine
the two voxels with minimal and maximal x coordinate values
respectively. The extents ai,bi,ci are then the differences be-
tween the maximal and minimal coordinates along the x, y and z
axes of pore i.

• Shape factor Fi: The shape factor Fi of a pore i is defined as the
ratio between the pore surface Si and the pore volume Vi.

• Directional shape factors F(x/z)i
,F(y/z)i

,F(x/y)i
: Mayr et al. [20]

define the shape factors of typical ellipsoidal pores for each di-
rection in space as follows: F(x/z)i

= ai/ci,F(y/z)i
= bi/ci and

F(x/y)i
= ai/bi.

On the basis of these properties a MObject of the whole dataset is
calculated in order to explore and visualize representative MObjects in
a dataset.
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5 VISUALIZATION

We introduce novel methods for the visualization and interactive ex-
ploration of MObjects which are based on a set of individual objects in
a dataset. Besides the calculation and visualization of MObjects (see
Section 5.1) we propose a homogeneity visualization of the dataset. It
uses local MObjects and a color-coding of the grid-based sub-volumes.
The approach is based on the deviation of average individual prop-
erties, e.g., the average pore volume in a cell (see Section 5.2). To
explore MObjects we present two visualization approaches in Sec-
tion 5.3 which use MObject Sets in radial and parallel arrangement.
Furthermore we discuss interaction techniques for these two methods
including visual linking.

5.1 MObject Visualization
For the visualization of a single MObject we introduce an uncertainty
cloud surrounding the MObject core (see Section 5.1.1). We used
transfer functions which are described in more detail in Section 5.1.2.
To calculate a MObject all individual objects are spatially aligned by
their centers. The center position can be calculated from the dimen-
sions ai,bi,ci of the individual objects or the barycenter of each indi-
vidual object can be used. Both methods showed similar results for
pores in CFRP datasets as pores typically have nodular, disc, or long
and elongated shapes. In order to avoid additional calculations, we
decided to use the dimension-based approach. When transferring the
MObjects idea to other application areas, the centroid calculation has
to be reconsidered according to the specific requirements. Although it
is possible to rotate and register all individual objects in the calcula-
tion, we align them with their original orientation. This transformation
without a rotation is important in the specific application area of CFRP
analysis which we address in this work. Due to the layer structure of
the material the MObject should clearly visualize the different orienta-
tions of the individual objects. For each voxel in the individual object
dataset, the distances ∆x,∆y and ∆z to the center are calculated. Af-
ter the distance calculation for one voxel, the corresponding voxel in
the MObject with the same distances ∆x,∆y and ∆z to the center of
the MObject is incremented. This step is done for each voxel of each
individual object. To get the corresponding probabilities the resulting
MObject dataset is normalized to 1.

5.1.1 Uncertainty Cloud

A MObject is a volumetric dataset, where each voxel holds the prob-
ability of belonging to the MObject. This information has to be vi-
sualized accordingly. We visualize an uncertainty cloud surrounding
the MObject’s core. Uncertainty cloud and core are based on the
stored probabilities. A high probability at a specific position means

Fig. 4. (1) MObject showing a small uncertainty cloud using a low un-
certainty filter σ = 0.15. (2) A high uncertainty filter σ = 0.9 leads to an
uncertainty cloud showing the MObject’s core and outliers.

Fig. 5. Based on the partitioning (1) of the volume into cells, local MOb-
jects (2) and a color-coded homogeneity visualization (3) is shown to
the user. The color-coding illustrates the deviation of the average cell
properties from the global average property. Red indicates the highest
positive deviation, whereas blue shows the highest negative deviation.

that nearly all of the individual objects which were summed up to the
MObject, include this location. In Figure 1 the uncertainty cloud (U) is
illustrated. The probability in the core of the MObject is typically high
(H). As the contribution of outliers to the MObject is low, they have a
medium (M) or low (L) probability of belonging to the MObject.

5.1.2 Transfer Function Design

The uncertainty cloud is visualized using transfer functions. We apply
colors for high probabilities (blue) to medium (yellow) and low proba-
bilities (gray). Yellow-grey thus shows the outliers (see Figure 4). The
step between high (blue) and medium (yellow) probabilities shows the
membership of belonging either to the core or the outliers of the MOb-
ject. For the interactive visualization and adaptability to different ap-
plications, the user steers this visualization by an uncertainty filter σ .
Figure 4 shows how the gray-yellow-blue gradient is shifted in the
transfer function based on σ . Setting a low uncertainty filter, leads to
a small uncertainty cloud and a visualization strongly representing the
surface of the MObject (1). In the case of using a high uncertainty
filter, one can clearly determine the core of the MObject and see the
surrounding outliers (2). To emphasize the uncertainty cloud, we ap-
ply a lower opacity value at the position of σ in the transfer function.

5.2 Local MObjects Visualization
Pore homogeneity is an important criterion in material sciences. We
already covered this topic with our porosity maps visualizing the
porosity in a CFRP specimen [23]. As the homogeneity of the dif-
ferent pore properties is also helpful to find interesting regions for a
further detailed analysis, this information has to be visualized in an
easy to understand and intuitive way. We propose a homogeneity vi-
sualization using local MObjects and a comparative homogeneity vi-
sualization with color-coded cells. Figure 5 describes our approach
in more detail. First the volumetric dataset is partitioned into sub-
volumes (1). We refer to them as cells. The cell size depends on the
biggest pore extents in the dataset as it should fit in a cell without over-
lapping. Based on this partitioning we implement two visualizations
to convey homogeneity to the user. In our first method we visualize lo-
cal MObjects (2). For each cell a MObject is calculated and centered
in the cell. All pores whose centers are inside the cell are considered.
The same transfer function is used for all local MObjects.

In our second approach the average pore properties and their devi-
ations to the global average properties of the whole dataset are calcu-
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Fig. 6. Illustration of the MObject Set calculation showing pores of a
CFRP dataset. All individual pores of the parent MObject (1) are divided
into two clusters A (2) and B (3). The resulting child MObjects (4 and 5)
make up a new MObject Set (6).

lated. The user is able to guide this comparative homogeneity visual-
ization by selecting a property. Each cell is colored according to its
deviation from the selected global property (3). For color-coding the
cells we apply a diverging colormap from blue over yellow to red to
show the negative and positive deviation of the average cell properties
from the global average property of the specimen.

5.3 MObject Set Visualization

For the interactive exploration of MObjects in a dataset we provide a
visual representation to the user. A parent MObject can be divided into
a set of child MObjects which together make up a new MObject Set.
All individual objects which belong to the parent MObject are clus-
tered based on one of the calculated properties. For each cluster a new
child MObject is calculated. The child MObjects together form a new
MObject Set. The MObject Set may be explored interactively with
a recursive selection and decomposition of the included child MOb-
jects. Figure 6 illustrates this process using individual pores of a CFRP
dataset. The parent MObject (1) is split up into the contained individ-
ual objects. First, these individual objects are clustered according to
their shape factors into two clusters A (2) and B (3). Second, all in-

dividual objects in a cluster are aggregated to new child MObjects (4
and 5). These child MObjects make up a new MObject Set (6). For
the clustering we provide two possibilities to the user:

• Automatic Clustering: The automatic clustering mode uses k-
means clustering to assign the individual objects to classes. All
the individual objects are classified into k clusters where each
individual object belongs to the cluster with the closest mean.
The user decides on the number k of clusters and which object
property should be used for clustering.

• User-defined Clustering: If the user wants to select the cluster
centers by himself, it is possible to override the automatic clus-
tering. One reason may be that specific domain expert knowl-
edge from previous analyses or a norm specifies the clustering
for a certain property. In this case the user is able to modify the
clustering done by the automatic approach using a simple dialog.

After clustering according to a certain property, a child MObject
is calculated for each cluster out of all individual objects that belong
to it. For the MObject Set visualization we propose then two modes.
Section 5.3.1 describes the beginners mode where we introduce the
radial MObject Set visualization. The expert mode with the parallel
MObject Set visualization is described in Section 5.3.2.

5.3.1 Radial MObject Set Visualization (Beginners Mode)
For inexperienced users, setting the number of classes for clustering
and specifying the sequence in which the properties shall be explored
can be a challenging task. To give a better overview of the data and
the resulting MObjects we provide a beginners mode for an interac-
tive exploration of MObjects. Figure 7 (A) illustrates the MObject
Set visualization in a radial arrangement. In most evaluation scenarios
two properties are sufficient (e.g., pore volume and shape factor). The
user selects the number of classes and the desired properties for the
MObject Set calculations. The radial design allows to render all possi-
ble combinations between the properties (A-1) and (A-2) and not only
one at a time (see parallel MObject Set visualization in Section 5.3.2).
Based on this visualization, parameters for the expert mode can be
found more easily. It further reduces the error rate of selecting unde-
sired MObjects while exploring the data. Through interactive selection
(A-3) the user is able to switch to the expert mode. There the MObject
Sets (A-4) and (A-5) are displayed in parallel arrangement, according
to the previously selected path.

5.3.2 Parallel MObject Set Visualization (Expert Mode)
The before described radial MObject Set visualization (see Sec-
tion 5.3.1) leads to a fixed classification of the individual objects. Ex-
perienced users want to cluster the pores based on their properties in a

Fig. 7. (A) The radial MObject Set visualization shows all possible combinations between the properties (A-1 and A-2). (A-3) The user is able to
switch to parallel alignment which shows MObject Sets (A-4 and A-5) along the selected path. (B) Parallel MObject Set visualization for a step by
step exploration. MObject Sets (B-1, B-3 and B-5) are calculated and visualized after interactive selections (B-2 and B-4).
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sequence that best fits their needs to extract the MObjects of interest.
This sequence of properties may be different from case to case. To
support this situation we present the parallel MObject Set visualiza-
tion which is illustrated in Figure 7 (B). MObject Sets are calculated
and visualized after interactive selections. All individual objects of
the dataset are clustered based on a property and a user-defined num-
ber of clusters, e.g., three shape factor classes. The resulting MOb-
jects are shown in a MObject Set (B-1). Through interactive selec-
tion of a MObject (B-2), the user is able to iteratively repeat the be-
fore described step of MObject Set calculation to explore the selected
MObject. As a result a new child MObject Set (B-3) is calculated and
visualized. As one would commonly use different properties as clus-
ter criteria, it is possible to repeat the interactive selection step (B-4)
to calculate another MObject Set (B-5) and finally explore the whole
dataset to find the desired MObjects.

5.3.3 Scaling through Visual Linking

In our visualization all MObjects are rendered in individual frames
of the same size. The MObjects are scaled to best fit their corre-
sponding rendering frame. Our visual linking approach connects all
MObjects along the selection path so that it becomes obvious where a
child MObject is located inside the parent MObject. Furthermore the
scaling of a considered MObject in the hierarchical relationship is rep-
resented. To do so, the transfer function for all MObjects except the
selected MObject in the visualization is changed in a way, that only
the surfaces of the MObjects are shown in grey with a high opacity.
The selected MObject is then shown in all MObjects along the selec-
tion path. Figure 8 illustrates this approach using a parallel MObject
Set visualization with two MObject Sets (A) and (B). When selecting
a child MObject (1) visual linking shows the selected MObject inside
the parent MObject (2) of the parent MObject Set (B).

6 RESULTS AND EVALUATION

The initial design of the MObjects visualization is motivated by a high
demand of material characterizations in the aeronautics industry. Es-
pecially carbon fiber reinforced polymers (CFRP) show a great poten-
tial because of their increased stiffness and strength-to-weight ratio.
As a result of the manufacturing process, CFRP tends to have pores
inside. They can occur as nodular pores or crack-shaped delamina-
tions in the epoxy resin or as long and thin micro pores inside the fiber
bundles. In the following sections we show the local MObjects vi-
sualization including the color-coded homogeneity visualization (see
Section 6.1) as well as the radial (see Section 6.2) and parallel (see
Section 6.3) MObject Set visualization to explore a high number of
individual pores. For the further evaluation we gathered user feedback
from domain specialists through a questionnaire (see Section 6.4). The
results show a CFRP dataset with a size of 1800 x 1600 x 100 voxel
and a porosity of 1.94 %. The computational time including all pre-
processing stages, the calculation of the global MObject and the local

Fig. 8. Illustration of the visual linking approach. After selecting a MOb-
ject (1) in a MObject Set (A), visual linking shows the selected child
MObject inside the parent MObject (2) of the parent MObject Set (B).

Fig. 9. (1) Local MObjects visualization using a high uncertainty filter
σ = 0.9. (2 and 3) Enlarged visualization of two MObjects.

MObjects as well as the cell calculations for the color-coded homo-
geneity visualization was about 17 minutes on an Intel Xeon X5680
workstation with 48 GB RAM. We have integrated the pipeline in
our framework iAnalyse. The MObject calculation and visualization
stages are still non-optimized prototypes. As these prototypes are suit-
able to test the acceptability of our approach using real-world com-
ponents, the major focus was not the optimization at this stage of the
development. With reduced calculation times due to optimization we
expect to be in the range of 1 minute and below which is acceptable in
this application area.

6.1 Local MObjects Visualization

In our local MObjects visualization the CFRP dataset is partitioned
into a 4 x 3 grid of cells. The number of rows and columns in the
grid is calculated automatically depending on the biggest pore extents
in the dataset. We ensure that the MObjects fit into the cells without
overlapping. For each cell a local MObject is calculated and shown
to the user (see Figure 9 (1)). The MObjects can be visualized using
different uncertainty filters, e.g., σ = 0.9. Figure 9 (2 and 3) shows
two enlarged MObjects from (1). As the MObjects’ cores look simi-
lar, there is a homogenous distribution of small individual pores over
the dataset in x direction, whereas big individual pores can be seen
as outliers in (3). These outliers lead to an inhomogeneous porosity
distribution in the specimen. Based on the given partitioning the user
can switch to the comparative homogeneity visualization with color-
coded cells as shown in Figure 10. Without coloring the cells (1) it is

Fig. 10. (1) Visualization of the CFRP dataset. Homogeneity visualiza-
tion of the deviation from the average pore (2) volume, (3) dimension x,
and (4) dimension z in a 4 x 3 grid showing the CFRP dataset in the
background.
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Fig. 11. (A) Radial MObject Set visualization of a CFRP dataset showing combinations of the properties shape factor and volume. (B) Parallel
MObject Set visualization of a CFRP dataset showing the selected path and visual linking. (C) Representative mean pores of a CFRP dataset
showing the visual linking visualization (left column) and the MObjects (right column). (C-1 and C-2) Nodular and disc-shaped pores. (C-3 and C-4)
Long and thin micro pores in x and z direction.

hard to gain information about the pore homogeneity. By applying the
color-coding, the user is able to see the homogeneity of one property.
Our visualization shows the deviation of the average pore volume (2),
dimension x (3), and dimension z (4) from the corresponding average
global property. Further properties we can show are the shape factor
and the dimension in y direction. Blue colors show a high negative de-
viation whereas red indicates a high positive deviation. In this example
the homogeneity regarding the pore volume is particularly interesting.
A trend can be seen, where in the left part of the specimen the average
pore volume is significantly lower (2). Related to active thermography
calculations, the homogeneity of the pore dimensions in x and z di-
rection is of interest. Especially the homogeneity of the dimension in
x direction (3) shows cells with a high deviation with respect to each
other. For the homogeneity of the dimension in z direction (4) lower
values in the left part of the specimen are visualized similar to the pore
volume deviation.

6.2 Radial MObject Set Visualization
In the beginners mode the MObject Sets are arranged in a radial layout.
The user can select the desired properties and the number of classes
for the MObject Set calculations. The resulting visualization allows
the user to see all possible combinations between the properties to get
a better overview of the data and the resulting MObjects. Figure 11
(A) shows the radial MObject Set visualization for a CFRP dataset.
The MObject of the whole dataset is shown in the center of the radial
arrangement. The inner circle shows the MObject classifications based
on three shape factor sub-classes. Each of these sub-classes is split up
into two sub-classes according to pore volume. Hence all possible
combinations of pore shape factor and volume are visualized in one
view. Based on this information the user is able to draw conclusions
about the individual pores. Using this detailed pore overview, it is
easier to parameterize the expert mode (see Section 6.3).

6.3 Parallel MObject Set Visualization
The parallel MObject Set visualization shows MObject Sets in a paral-
lel arrangement. The user can interactively explore the MObjects. The
results of a CFRP dataset are depicted in Figure 11 (B) using visual
linking. First the parent MObject is split into three user-defined shape
factor classes (B-1). The three MObjects make up a new MObject Set.
After the selection of the last MObject in this set (B-2), it is split into
two classes based on the dimension in x direction (B-3). This step al-
lows to separate the cross-shaped long and thin micro pores. Finally,
the first class of the new MObject Set (B-4) is split into two classes
based on the dimension in z direction (B-5). We used the parallel
MObject Set visualization to find the representative mean pores in the
CFRP dataset (see Figure 11 (C)). As a result of the manufacturing

process nodular and disc-shaped pores propagate in the epoxy resin
(C-1) and (C-2). Long and thin micro pores occur in x and z direction
due to the twill-weave pattern of the fiber layers (C-3) and (C-4).

6.4 Evaluation Questionnaire
For the evaluation, a questionnaire (see Table 1) was answered by 12
respondents of which make up two groups. The first group consists
of domain experts of a company manufacturing aircraft components,
including non-destructive testing (NDT) practitioners and various en-
gineers of the CFRP production process. They use our visualizations
for gaining new insights into their components in order to draw conclu-
sions about the manufacturing process (MObjects Visualization - Task
1). Furthermore the domain experts use the MObject Set visualization
to explore the pores. The resulting representative mean pores are used
to improve ultrasonic calibration (MObjects Exploration - Task 3).

The second group of respondents consists of active thermography
domain experts. They have a strong demand for a better understand-
ing of the different pores in a CFRP component. Currently geometric
primitives are used for mathematical simulations of a heat conduction
model. Based on the MObjects exploration and the resulting repre-
sentative MObjects, the domain experts take the mean pores of a real
dataset as input for the heat conduction simulations. As their method

Table 1. Summary of the Evaluation Questionnaire

Ta
sk

1 Identification of deviating (not nodular) structures
in a 3D rendering −
in a MObject visualization ±

Ta
sk

2

Pore homogeneity identification of the dataset
in the individual pores visualization ∓
in the local MObjects visualization ±
in the color-coded homogeneity visualization +
Pore homogeneity identification in the cells
in the individual pores visualization −
in the local MObjects visualization ±
in the color-coded homogeneity visualization ◦

Ta
sk

3

Identification of the selected path and the different scal-
ings through visual linking in a parallel MObject Set vi-
sualization

+

Identification of representative pore classifications
in a 3D rendering ∓
in a MObject visualization +

− poor, ∓ fair, ◦ average, ± very good, + excellent
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assumes a homogenous distribution of the pores, the homogeneity vi-
sualization of the different pore properties is important (Local MOb-
jects Visualization - Task 2). These new possibilities aim to improve
the simulations and finally the active-thermography method. The ref-
erence methods ultrasonic testing and active thermography only pro-
vide 2D images with lower resolutions. Due to the missing 3D infor-
mation, we were not able to directly compare the MObjects visual-
ization to existing NDT methods. As the common XCT visualization
is a 3D rendering of the dataset, we compare our MObject visualiza-
tions to 3D renderings of segmented pores instead. Until now there
has not been an averaging approach available to visually explore the
characteristics of defects in XCT datasets in 3D.

The questionnaire focuses on the evaluation of the three tasks con-
cerning the MObjects visualization (MObjects Visualization - Task 1),
the homogeneity visualization (Local MObjects Visualization - Task
2), and the MObjects exploration and extraction of representative
MObjects (MObjects Exploration - Task 3) in a dataset. A summary
of the evaluation-questionnaire results is shown in Table 1.

MObjects Visualization (Task 1): Regarding the MObject visualiza-
tion, the experts were shown 3D renderings of individual objects in
isometric and xz views as well as 3D renderings of the corresponding
MObject visualizations. Two different transfer function settings influ-
ence the visual depiction of the uncertainty cloud. In the questionnaire
the respondents were asked whether they can identify deviating struc-
tures in the visualizations. As the used dataset mainly contains nodular
pores, apart from a few elongated objects with a different shape fac-
tor, the respondents were asked to identify deviating structures like
non-nodular outliers. The feedback confirms, that it is easier to find
deviating structures in the MObject visualizations than in the 3D ren-
derings showing the individual objects. This is due to the occlusion
of the individual objects, so that deviating structures are hardly or not
at all seen in a 3D rendering. Considering the answers about the dif-
ferent transfer function settings in the MObject visualizations, a slight
trend is recognizable. Although the outliers can be clearly seen in both
MObject visualizations (σ = 0.15 and σ = 0.9), due to perceptional
reasons the respondents prefer a setting where the uncertainty cloud
clearly separates the core from the outliers (σ = 0.9).

Local MObjects Visualization (Task 2): To evaluate the local MOb-
jects visualization, we compared the visualization of segmented pores
in a CFRP dataset, the corresponding visualization of local MObjects
in a 4 x 3 grid, and the color-coded homogeneity visualization of the
same dataset. The task for the respondents was to find the cells with
lowest, highest positive and highest negative deviation of the pore
properties in the segmented pores and the color-coded homogeneity
visualization. It was nearly impossible for the participants to see the
pore homogeneity in the segmented pores visualization whereas they
were able to properly classify all cells in the color-coded homogene-
ity visualization. Regarding the local MObjects visualization the re-
spondents were asked to find the MObjects with lowest and highest
average pore properties in the dataset as well as the lowest and high-
est pore homogeneity in the cells. Generally the respondents judged
our local MObjects visualization positively for perceiving the pore ho-
mogeneity inside the cells. To convey the pore homogeneity of the
whole dataset across all the cells the color-coded homogeneity visual-
ization was rated as a highly helpful visualization. Especially active
thermography experts gain new homogeneity information out of our
visualization to evaluate and evolve their method.

MObjects Exploration (Task 3): Another part of the questionnaire
addressed the interactive MObjects exploration approach. The respon-
dents rated as high the need of the exploration to find nodular, long
and thin as well as crack-shaped objects. Furthermore they agreed that
the classifications based on the pore volume, the dimensions and the
shape factors are very interesting. There is a slight preference to take
the shape factors as the most important property. For each property the
experts typically split up a MObject into two to five sub-classes. All
respondents were able to identify the selected path in a MObject Set
visualization. The visual linking approach was positively received, as
it allows to see the different scalings of the different MObjects along

the selected path. The last aspect of the evaluation comprises the ex-
ploration of representative mean pores in a CFRP dataset. The re-
spondents were shown a 3D rendering of segmented pores in a CFRP
specimen and the corresponding MObject visualization. They were
hardly able to identify nodular, long and thin micro pores as well as
cracks in the rendering of the segmented pores. On the other hand
they positively valued the MObject visualization where it was easy
for them to identify the different pore classifications. Furthermore we
showed the respondents renderings of MObjects with different pore
classifications. These were found with the MObjects exploration ap-
proach. The respondents agreed that the MObjects convey the typical
pore structures in a CFRP dataset.

Further Feedback: NDT practitioners mentioned that the MObjects
visualization may have considerable practical relevance in future in-
line XCT systems for 100 % testing in quality control. An automatic
MObject evaluation tool may single out components with critical de-
fects.

7 CONCLUSIONS AND FUTURE WORK

A novel method for the visualization and interactive exploration of
MObjects was presented. We calculate MObjects from a set of indi-
vidual objects and visualize them by applying transfer functions. As
the MObjects dataset stores probabilities, the transfer function design
is guided by a user-defined uncertainty filter. The approach includes
the visualization of pore homogeneities as well. Local MObjects are
visualized on a regular grid to show the pore homogeneity in individual
cells. To visualize the pore homogeneity of the whole dataset, a color-
coded homogeneity visualization was implemented which shows the
deviation from the average pore properties. For the exploration with
our MObject Set visualization we proposed a beginners mode in ra-
dial arrangement and an expert mode in parallel arrangement. Besides
the interactive selection of MObjects, we introduced a scaling through
visual linking approach along a selected path. Single MObjects hold
probabilities for each voxel of belonging to the MObject and are vi-
sualized using transfer functions. They can be exported as volumetric
dataset to drive subsequent calculations or simulations.

We have applied our techniques to cases of high practical relevance
in the aeronautics industry. Representative pores of a CFRP dataset
were found during interactive exploration of the MObjects. Based on
these results NDT practitioners calculate the most appropriate ultra-
sonic calibration curve for each component to be tested in quality con-
trol. In active thermography the representative pores serve as input
for the heat conduction simulations to improve the underlying model.
Domain experts of a company manufacturing aircraft components and
active thermography experts evaluated the MObjects approach with a
questionnaire and found it to be a helpful tool with high practical rel-
evance.

Although we focused on the evaluation of pores in this work, our
approach can be used for all kinds of defects in material sciences. In
the future we will apply our methods on cracks, inclusions, particles
and fibers. Currently the number of classes into which a parent MOb-
ject is split up regarding a specific property is user-defined. This is
based on the knowledge of the domain experts as well as norms spec-
ifying the number of partitions for certain properties. For future work
the number of classes, a MObject is split up, can be chosen by an
automatic approach.

ACKNOWLEDGMENTS

This project was supported by the program Regionale Wettbe-
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[7] S. Bruckner and T. Möller. Result-Driven Exploration of Simulation Pa-
rameter Spaces for Visual Effects Design. IEEE Transactions on Visual-
ization and Computer Graphics, 16(6):1467–1475, October 2010.
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Multi-Material Components using Dual Energy CT. In VMV 2008, Vi-
sion, Modeling and Visualization, pages 179–188, October 2008.

[12] A. Inselberg. Parallel Coordinates: Visual Multidimensional Geometry
and Its Applications. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2009.

[13] C. Y. Ip, A. Varshney, and J. F. Jaja. Hierarchical Exploration of
Volumes Using Multilevel Segmentation of the Intensity-Gradient His-
tograms. IEEE Transactions on Visualization and Computer Graphics,
18(12):2355–2363, December 2012.

[14] J. Kniss, R. Van Uitert, A. Stephens, G.-S. Li, T. Tasdizen, and C. Hansen.
Statistically quantitative volume visualization. In Proceedings of IEEE
Visualization 2005, pages 287 – 294, oct. 2005.

[15] R. Kosara, F. Bendix, and H. Hauser. Parallel Sets: Interactive Explo-
ration and Visual Analysis of Categorical Data. IEEE Transactions on
Visualization and Computer Graphics, 12(4):558–568, July/August 2006.

[16] A. Lex, M. Streit, H.-J. Schulz, C. Partl, D. Schmalstieg, P. J. Park, and
N. Gehlenborg. StratomeX: Visual Analysis of Large-Scale Heteroge-
neous Genomics Data for Cancer Subtype Characterization. Computer
Graphics Forum, 31(3):1175–1184, 2012.

[17] K.-L. Ma. Image Graphs - A Novel Approach to Visual Data Exploration.
In Proceedings of IEEE Visualization ’99, pages 81–88, 1999.
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Visual Parameter Space Analysis: A Conceptual Framework

Michael Sedlmair, Member, IEEE, Christoph Heinzl, Member, IEEE, Stefan Bruckner, Member, IEEE,
Harald Piringer, and Torsten Möller, Senior Member, IEEE

Abstract—Various case studies in different application domains have shown the great potential of visual parameter space analysis
to support validating and using simulation models. In order to guide and systematize research endeavors in this area, we provide a
conceptual framework for visual parameter space analysis problems. The framework is based on our own experience and a structured
analysis of the visualization literature. It contains three major components: (1) a data flow model that helps to abstractly describe
visual parameter space analysis problems independent of their application domain; (2) a set of four navigation strategies of how
parameter space analysis can be supported by visualization tools; and (3) a characterization of six analysis tasks. Based on our
framework, we analyze and classify the current body of literature, and identify three open research gaps in visual parameter space
analysis. The framework and its discussion are meant to support visualization designers and researchers in characterizing parameter
space analysis problems and to guide their design and evaluation processes.

Index Terms—Parameter space analysis, input-output model, simulation, task characterization, literature analysis

1 INTRODUCTION

Over the last decade, simulation models have become increasingly
prevalent in a variety of application areas. In the visualization lit-
erature, for instance, case studies have shown how such simulation
models were used to better understand weather and climate phenom-
ena [56], the spread of infectious diseases [1], biological cell profiling
[43, 57], and complex engineering and design problems [4, 18, 21, 37].
Structurally, all these examples are based on simulation models that
define a set of parameters as inputs and are able to compute corre-
sponding outputs for a particular parameterization.

From an abstract lens, many examples show recurring structures,
tasks and goals. A typical goal is, for instance, the optimization of the
output by identifying reasonable input parameter settings. Assessing
the optimality of outputs often involves trading-off multiple contra-
dicting objectives as well as qualitative judgments of complex data
like time series [1, 37], segmented image data [69], animations [18],
and 3D geometry [21]. Fully automatic optimization is then often too
complex, expensive, or simply not clear how to achieve, and must be
complemented by a human manually inspecting simulation outputs.

Traditional approaches of solving such problems were based on in-
formed trial and error strategies. Based on prior knowledge and ex-
perience, the input parameters are set to a specific value. Then, the
model is run and outputs are manually inspected. If the outputs are
not satisfactory, the next iteration starts and the model is re-run with a
different set of parameter values. A major drawback of this approach,
however, is that model runs are often very expensive, that is, it takes
minutes or even hours for single runs. In such cases, trial and error
leads to severe and unwanted interruptions during the workflow.

To overcome these drawbacks, many researchers have recently pro-
posed more structured workflows. To do so, interesting parts of the
parameter space are coarsely sampled to generate input parameter sets.
Then, the corresponding outputs are computed offline for all of these

• Michael Sedlmair is with the University of Vienna.
E-mail: michael.sedlmair@univie.ac.at.

• Christoph Heinzl is with the University of Applied Sciences Upper Austria.
E-mail: Christoph.Heinzl@fh-wels.at.

• Stefan Bruckner is with the University of Bergen.
E-mail: stefan.bruckner@uib.no.

• Harald Piringer is with VRVis. E-mail: hp@vrvis.at.
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sample settings, e.g., over-night or over the weekend. Finally, visual-
ization approaches allow for exploring, investigating, and understand-
ing the space of sampled inputs and their resulting outputs. Such ap-
proaches have become known as visual parameter space analysis tech-
niques and offer an attractive possibility to deal with the complexity
of the models while still keeping the human in the loop.

The current body of work in visual parameter space analysis com-
prises mostly tools and case/design studies from different application
areas [1, 4, 14, 16, 37, 56, 57, 76]. In this paper, our goal is to take a
step back from the current application-oriented lens on visual parame-
ter space analysis and provide an abstract conceptual framework. The
framework can be used to describe, discuss, and evaluate visual pa-
rameter space analysis solutions across different application domains,
as well as to guide researchers in their design and evaluation decisions.

With our framework, we specifically make three primary contribu-
tions. First, we propose a data flow model (Section 4) that abstractly
describes visual parameter space analysis problems and characterizes
recurring data manipulation operations: sampling input parameters,
deriving objective measures from outputs, and predicting outputs with
cheaper surrogate models. Second, we present a classification of four
navigation strategies (Section 5). We most importantly distinguish
between local-to-global and global-to-local navigation strategies. In
local-to-global strategies exploration starts from inspecting a specific
sampled simulation run and then provides ways to navigate through
other runs. In global-to-local strategies the exploration starts with an
overview over all runs and then allows users to drill down into spe-
cific runs. Our third primary contribution is a characterization of six
typical analysis tasks (Section 6) in visual parameter space analysis:
optimization, partitioning, fitting, outliers, uncertainty, and sensitivity.

Our framework is based on our own experience working in visual
parameter space analysis, collaborations with simulation experts, as
well as a structured literature review of case/design studies in this area.
This work additionally led us to identify three open research gaps to
guide future work in this area (Section 8). Within the framework, we
also offer a unified set of definitions and terminology facilitating re-
search communication and progress. We consider these as secondary
contributions of our work.

1.1 Definitions

The set of problems we are focusing on appears in the context of
computational input-output models. We define input-output models
broadly as any sort of function that maps a set of input parameters to
a set of outputs. Together we simply refer to them as variables. Input-
output models can therefore be, for instance, computational simula-
tions, but most other types of algorithms also match these characteris-
tics.
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A typical goal of using such input-output models is to find an input
parameter setting that leads to “good” output results. To achieve this
goal, it is necessary to sample the model by setting the input parame-
ters to specific values and compute the outputs corresponding to these
inputs. One specific sample is also referred to as a simulation run;
all samples/runs together are referred to as sampled data. In some
application domains, this sampled data is also referred to as an ensem-
ble [56]. Given that, we define parameter space analysis as follows:

Parameter space analysis (PSA) is the systematic varia-
tion of model input parameters, generating outputs for each
combination of parameters, and investigating the relation
between parameter settings and corresponding outputs.

In some cases this process might be achieved fully automatically.
Our focus is on how interactive visualization facilitates this analysis.
We refer to this concept as visual parameter space analysis (vPSA).

1.2 Example: Tuner
A typical example for visual parameter space analysis is the tool Tuner
by Torsney-Weir et al. [69]. One of the input-output models in their
case is a brain segmentation algorithm. As input parameters, this
model takes a scanned image of the brain as well as a set of numerical
control parameters that define how the algorithm operates. The output
is a segmented brain image where different brain regions are marked,
for instance, as background, skull, white matter, or grey matter.

Running the model with different settings of control parameters re-
sults in tremendous variations of the quality of the output segmenta-
tion. The goal is therefore to identify a parameter setting that leads to
“good” segmentations. In this example, finding a “good” segmenta-
tion necessitates to subjectively trade off multiple objectives and fully
automatic approaches are not suitable. Thus, Torsney-Weir et al. [69]
suggested to coarsely sample the parameter space over night and then
use methods of visual parameter space analysis to explore and analyze
the sampled data, that is, instantiations of different input parameter
settings and their corresponding output segmentations.

We will use Tuner as a running example for introducing our frame-
work. More details will be discussed along the way, such as Figures 2,
3, 4 and 5 that refer to Tuner. We will also introduce other examples
of visual parameter space analysis applications to further illustrate our
abstract framework.

2 BACKGROUND

With the growing amount of published visualization research, build-
ing up a higher-level, more theoretical understanding of the work in
our field becomes increasingly important. Towards that goal, this pa-
per follows in the line of structured analyses of the visualization liter-
ature [11, 31, 39] . Bertini et al. [11], for instance, proposed a system-
atization and overview of quality measures and derived implications
for future work. Here, we focus on a similar goal as Bertini et al. but
for the area of visual parameter space analysis.

Our framework specifically focuses on problem abstraction, as well
as strategies and tasks that occur in visual parameter space analysis.
Many researchers have called for a stronger focus on such task and
problem characterizations in visualization research [39, 47, 51, 70].
Following these calls, researchers have recently started to more ac-
tively focus on pure problem characterization papers. Kandel et
al. [34], for instance, have studied analysts within the social and or-
ganizational context of companies. Kang and Stasko [35] characterize
usage patterns and problems by conducting case studies with their text
analysis tool Jigsaw. Earlier work from Tory and Staub-French char-
acterizes visualization practices and collaboration patterns of building
designers [72]. Our work follows a similar goal, that is, characterizing
a specific set of problems. However, we have a different focus: while
the above papers focus on specific application domains, we focus on
a specific set of abstract problems, visual parameter space analysis,
across application domains.

Previous work on task characterization has mostly focused on
straightforward low-level tasks [2, 5, 36, 65], such as detecting out-
liers, or high-level goals [3, 41], such as hypothesis generation. Only

recently, researchers have started to characterize complex tasks that
lie between these two extremes and that better reflect the needs of real
users [17, 47, 58, 61]. Our work on tasks has similar goals. However
while the previous work is targeted at generic visualization tasks, we
focus on a specific set of data analysis challenges appearing around vi-
sual parameter space analysis. We argue that characterizing problems
and tasks from more specific angles is indispensable for getting a more
concrete understanding of users’ needs in these areas.

We see our work between the extremes of narrow, domain-specific
task characterizations as done in design studies [64], and generic task
taxonomies. Notable examples along these lines are Lee et al.’s work
on characterizing tasks for graph visualization [40], and Sedlmair et
al.’s work on dimensionality reduction tasks [62].

3 METHOD

The framework is primarily based on our own experience conduct-
ing design studies in parameter space analysis and collaborating with
simulation experts in different domains [4, 9, 10, 14, 18, 55, 69]. In
these design studies, we started to identify and describe data and task
characteristics. Here, we build on these domain-specific experiences,
propose an abstract, domain-independent framework, and derive novel
insights in terms of analysis strategies, tasks, and open research gaps.

To additionally ground our framework, we conducted a structured,
in-depth analysis of the relevant research literature. Our assumption
is that these research papers can be seen as a proxy for the problems,
data and tasks of end users. From the visualization literature, we gath-
ered an initial set of 112 research papers that we deemed potentially
interesting. A closer analysis of these papers led us to a set of 21 core-
relevant papers [1, 4, 9, 10, 14, 16, 18, 21, 26, 37, 43, 44, 45, 46, 55,
56, 57, 68, 69, 73, 76]. This selection was based on a set of exclusion
criteria that we defined. First, we specifically excluded papers without
concrete applications of parameter space analysis. Without a close
connection to a concrete application we cannot reliably argue about
user tasks. Second, we excluded papers with automatic analyses only
to keep the focus relevant to the visualization community. Third, we
excluded papers that did not match our definition of parameter space
analysis, as outlined in Section 1.1.

Similar to a machine learning approach, we split the 21 core papers
into two groups, a “training” and a “validation” set. We selected and it-
eratively analyzed 14 papers (training set), with three major rounds of
iterations. We used this first round of analysis to step-by-step improve
and refine the initial conceptual framework that we developed based on
our own experience and collaborations. This analysis specifically in-
formed our characterization of exploration strategies (Section 5), anal-
ysis tasks (Section 6), and research gaps (Section 8). We then analyzed
the remaining 7 papers to validate the robustness of our framework
(validation set). In general, our analysis was inspired by open, ax-
ial and selective coding strategies as used in Social Science [19, 24].
Overall, each paper was coded by at least two authors (average 2.8
coders/paper). More details about the methodological approach can
be found in the supplemental material.

In the following sections, we will use selected examples from the
21 core-relevant papers to illustrate our framework. Table 1 on page 7
summarizes the final categorization of these 21 papers.

4 DATA FLOW MODEL

Our first contribution is a data flow model that depicts how data is
generated and manipulated in a visual parameter space analysis set-
ting. Specifically, we characterize three key operations as part of this
model: sampling the input parameter space, derivation of objective
measures from the model output, and prediction of not-yet-computed
(or unsampled) outputs using computationally cheap surrogate mod-
els.

4.1 Basic Input-Output Model
The focus of our work is on input-output models, such as computa-
tional simulation models or algorithms. For a more evocative abstrac-
tion of these models, we use a simple graphical representation depict-
ing the data flow.

Authorized licensed use limited to: Christoph Heinzl. Downloaded on April 30,2021 at 10:17:18 UTC from IEEE Xplore.  Restrictions apply. 



2163SEDLMAIR ET AL.: VISUAL PARAMETER SPACE ANALYSIS: A CONCEPTUAL FRAMEWORK

Model

Input
Parameters Outputs

i1
i2
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Fig. 1. Simple input-output model with 3 input parameters and 2 outputs.

Consider the simple example in Figure 1. This model takes three
inputs and maps them to two outputs. The model might represent a
hypothetical weather forecast model that takes current temperature,
humidity, and pressure and based on them computes tomorrow’s prob-
ability of rain, as well as the speed of the wind. Such models can
come in very different forms. For instance, stochastic models [14, 74]
yield different outputs for repeated runs with the same input parameter
setting. On the other hand, deterministic models [18, 69] produce the
same outputs whenever run with the same parameter setting.

In the simplest form, the inputs and outputs of a model come as
real numbers. In that case, the model can be represented as a mapping
f : Rm → Rn, with m= 3 and n= 2 in the example of Figure 1. How-
ever, other data types are also common. We broadly classify input and
output types into two groups: (1)multi-variate/multi-dimensional, and
(2) complex objects [52]. This distinction is based on a semantic level,
not on mathematical concepts.

As in the simple example above, inputs and outputs can come as a
set of semantically meaningful variables (or dimensions) that are ei-
ther quantitative, ordered, or categorical. In the literature examples
we surveyed, we found that these sets of input/output variables rarely
exceeded 100 variables. Moreover, in all cases these variables were
semantically meaningful. That is, they were well chosen by the sci-
entists or users that study a specific model. We propose to refer to
these input parameters as multi-dimensional and to the output charac-
teristics as multi-variate. This choice leans on common mathematical
terminology [20] and allows us to distinguish between inputs and out-
puts. Further, we will not refer to these variables as high-dimensional
as this is a term usually common in machine learning and statistics
where the number of dimensions is in the thousands or millions, and
where dimensions have no strong semantic meaning, such as pixel val-
ues in an image. Note, that we are not proposing a clear-cut number
of variables/dimensions between multi- and high-dimensional, but ar-
gue that the strong or weak semantic meaning of dimensions/variables
distinguishes these two.

Alternatively, inputs/outputs can come as (semantically) complex
objects. For example, a 2D/3D image is a single complex object (de-
spite the fact that they can be modelled mathematically as N×N pix-
els, or N2 dimensions). Images cannot be easily described with a sin-
gle quantitative/ordered/categorical variable. The semantic unit is the
complex object itself. Other examples are animations, performance
graphs, social networks, or robot behaviors, just to name a few.

Naturally, both can coexist in a model. Consider the running ex-
ample on image segmentation from the introduction (Tuner). Here, a
brain segmentation algorithm takes a scanned image of the brain as
input and returns a segmented image as output where different colors
mark the individual brain regions, as illustrated in Figure 2.

Model
i

Fig. 2. Model with a complex object in addition to numerical variables
as input and a complex object as output. Example from Torsney-Weir et
al. [69].

Both the unsegmented 2D input image, as well as the segmented
2D output image are semantically complex objects. Additionally, the
model takes some quantitative input parameters that can be adjusted

to control the segmentation process. This example highlights the ex-
istence of different classes of input parameters. To better characterize
these differences, we adopt a classification from the statistics commu-
nity that separates input parameters into three classes [60]:

• Control parameters are parameters the user can directly manipu-
late. These parameters are of primary interest to parameter space
analysis problems, such as the three numerical inputs in the ex-
ample above (Figure 2).

• Environmental parameters are parameters that can be measured
in the real world, such as the un-segmented brain scan image in
the example. They are often prone to small changes and, hence,
are modeled as random variables. Therefore, these are parame-
ters that often cannot be directly controlled by the user.

• Model parameters are implicit parameters often needed for the
numerical realization of the model such as setting certain thresh-
olds, grid spacings or convergence criteria. They might be im-
portant during the model building but are mostly hidden during
the usage of a model.

4.2 Sampling
At the heart of visual parameter space analysis is the systematic sam-
pling of the input parameter space, and the generation of respective
outputs for each sample point (a specific setting of input parameters).
Figure 3 shows the sampling process by means of the segmentation ex-
ample. Each of the parameter settings leads to a different segmentation
output.

Model
i = 

3
4
5

1
2
3

,
2
3
4

,

Fig. 3. Sampling a model. Here, 3 different samples are generated by
running the model with 3 different input settings.

Most of the papers we analyzed used either regular or stochastic
sampling strategies. Regular Cartesian sampling—also known as full-
factorial designs in the statistics literature—was the most favored ap-
proach. In the case of random sampling, uniform random sampling
is used. Some strategies also employ Latin Hypercube approaches.
While these sampling strategies allow an overview of behaviors in the
parameter space, few tools we analyzed directly supported sampling
strategies from within the tools [10, 44, 69, 76]. We refer to this direct
integration as integrated sampling that allows users themselves to trig-
ger and refine sampling processes, for instance, to generate additional
samples or adapt sampling strategies.

4.3 Derivation
It is common that the output of a model is a complex object (18/21
of our analyzed examples). For an effective parameter space analysis,
many outputs will have to be studied together requiring an efficient
summary, specifically for complex objects. In such cases, the user of
the model might want to derive objective measures that summarize
the essential characteristics of the complex model output. We refer to
them as derived outputs. Consider the segmentation example again.
Figure 4 shows that for each segmented output image, a set of scalar
objective measures is computed. In this example, the objective mea-
sures are computed by comparing the segmented image to a ground-
truth, hand-segmented image. The measures quantify how much the
segmented areas differ between the output and the ground-truth image.

Alternatively, the use of pair-wise similarity (or distance) metrics
allows an easier comparison of different outputs visually or algorith-
mically. The distance metric can then be used to provide an overview
with distance-based visualization techniques such as MDS plots [29].
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Fig. 4. Derive additional variables. In this case, the segmented out-
put image from the algorithm is compared to a ground truth, hand-
segmented image. Differences are quantified as derived outputs.

4.4 Prediction
Sampling a model provides discrete combinations of inputs and out-
puts. Consider a simple model with 2 input parameters and 1 output.
Data from sampling this model 100 times could be easily visualized
in a scatterplot with the 2 inputs being the axes, the 100 samples are
drawn as points, and the output is mapped to a color-scale which is
used to encode each sample point.

However, often the model user is interested in seeing outputs at lo-
cations that have not been sampled. If sampling is cheap these points
can be just computed on the fly. However, usually generating samples
is computationally expensive and would therefore interrupt the analy-
sis process. In these cases, cheap surrogate models [60] can be lever-
aged to predict outputs that have not been sampled by the real model.
Moreover, surrogate models might allow one to predict all un-sampled
areas and to reproduce the actual continuous-to-continuous mapping
between inputs and outputs. Creating continuous spaces from discrete
samples is, in the signal processing community, referred to as approxi-
mation or interpolation [20]; in the statistical community this is known
as regression and prediction [13].

To illustrate this prediction step, let us once again come back to
the segmentation example from above. Predicting the two derived
objective measures from the three input control parameters leads to
a continuous-to-continuous mapping which now can be represented
with Hyperslices [75] instead of discrete scatterplots. The three in-
put parameters are mapped to the dimensions, and the two outputs are
mapped to orange-white and purple-white color scales, as illustrated in
Figure 5. The continuous mapping makes it possible to understand the
entire space of relations between in- and outputs, without restricting it
to a selected set of sample points.

Fig. 5. Hyperslices of the image segmentation algorithm. The 3 input
parameters are mapped to the axes. 2 derived outputs are encoded on
a white-purple, and a white-orange color scale. Courtesy of Torsney-
Weir et al. [69].

4.5 Summary: Data Flow Model
The complete data flow can now be summarized as in Figure 6. The
actual input-output model takes multi-dimensional input parameters
that can be controlled by the user, and produces direct outputs that
can either be multi-variate or complex objects. From these direct out-
puts further derived outputs may be extracted. This pipeline can be

Derived
Outputs

Direct
Outputs

Input
Parameters

Surrogate Model Predicted
Outputs

DeriveModel

Fig. 6. Our problem abstraction summarized as a data flow model.
Dashed and dotted lines indicate the optionality of the additional deriva-
tion and prediction steps.

replaced with a surrogate model taking the same input parameters but
now computing predicted outputs. Hence, the actual output space con-
tains direct outputs but can include derived and predicted outputs as
well. While there is alternative terminology that could describe this
problem space, we hope that this data flow model is evocative enough
through all areas of visualization research that it will be accepted as a
common language.

Note, that this summary depiction reflects a typical scenario. In
the real world, more complex scenarios do appear as well, including
multiple serial, parallel, or nested derivation steps. However, these
can be represented by simply recombining the elementary components
of the pipeline. Another interesting question related to this data flow
pipeline is where to draw the “line” between the model and derive
step. If a model returns multi-variate outputs, oftentimes these have
already been “derived” within the model. We argue that this depends
on the person who looks at the model and the stage of development.
A distinction we find helpful is between visualization researchers and
domain experts: direct outputs are what visualization researchers get
from domain collaborators, although they might be internally derived;
derived outputs are those which visualization researchers actively de-
velop or help developing.

5 NAVIGATION STRATEGIES

When data has been generated via sampling, derivation, and/or pre-
diction, this data needs to be presented to the user for exploration and
analysis. Based on our literature analysis, we classify four distinctive
strategies of how this data was made available for navigation.

5.1 Informed Trial and Error
Traditionally, parameter space analysis was conducted with informed
trial and error strategies. Based on prior knowledge, a user (1) runs
a model with a specific setting of input parameters creating one sam-
ple, (2) inspects the outputs of this sample, and (3) re-runs the model
with a refined set of parameter settings if the outcome was not sat-
isfactory. This sequential process can be effective if the simulation
output can be produced in real-time. Given that model computations
are usually expensive, the informed trial and error strategy, however,
has tremendous interruption costs: the user has to wait for minutes,
or even hours for new samples to be produced. Usually, this time to
find the right parameters is not reported. One simply finds a statement
along the lines of “We have found the following parameter settings to
yield good results ...”. The well known SIFT algorithm [42] serves as
a good example. It is a specific feature detector for computer vision
applications which works well when a number of parameters are set to
specific values. Since no systematic determination has been reported
in the paper, it is likely that finding these parameter settings has been
done following the wide-spread, traditional trial and error strategy.

5.2 Local-to-Global
To allow for real-time interaction rates despite high model compu-
tation costs, researchers have suggested to pre-compute samples be-
fore the actual parameter space analysis process. The expensive pre-
computation can be done, for instance, over night. The column ”no. of
samples” in Table 1 on page 7 shows the numbers of samples used in
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(a) local-to-global (b) global-to-local (c) steering

Fig. 7. Examples for different navigation strategies: (a) Local-to-global: The user can interactively manipulate the size of the cutting window (input
parameters), which is then updating the overlaid stress field heatmap (output). Courtesy of Coffey et al. [21]. (b) Global-to-local: The view at the
top-right and the view at the bottom show overviews of all simulated explosion (outputs) using representative thumbnail images. Upon selecting
one specific explosion its animation can be inspected in the top-mid view. The circular parallel-coordinate plots on the left show the respective input
parameter settings. Courtesy of Bruckner and Möller [18]. (c) Steering: The user can interactively place sand sacks (input parameters) while a
flooding simulation is running (output). Courtesy of Waser et al. [76].

the papers we analyzed. Based on the tradeoff between computational
costs on the one hand and analysis accuracy on the other hand, the
number of generated samples ranges often between 100 and 1000.

Given this set of precomputed sample points, we identified differ-
ent characteristic strategies of how they were visually represented and
navigated in analysis tools. The local-to-global strategy starts with
showing one specific output and lets the user explore alternatives from
there. Consider, for instance, a visual parameter space analysis ex-
ample supporting the design of a medical biopsy device, as shown in
Figure 7(a) [21]. Here, a virtual CAD device is used to explore vari-
ous characteristics such as the length of the tissue cutting window or
the outer radius of the cannula, which are the inputs to a simulation
model. The simulation output, a scalar stress field, is directly mapped
as a heatmap onto the CAD virtual device. The navigation through the
pre-computed design space starts with showing a very specific sample,
that is, specific device characteristics and a specific stress field. A user
can now interactively change the device characteristics (inputs), and
in doing so updates the stress field heatmap (output). Step-by-step the
user can interactively infer global structures from local searches.

5.3 Global-to-Local

Global-to-local navigation strategies are similarly based on the pre-
computation of a large set of sample points. However, instead of start-
ing with a specific sample and navigate alternatives from there, the
goal is to start with an overview over all pre-computed samples and
then drill-down into more details. In that sense, this strategy is closer
to Shneiderman’s venerable mantra “Overview first, zoom and filter,
then details on demand” [65].

Consider, for instance, how Bruckner and Möller used visual pa-
rameter space analysis to support visual effect designers in finding de-
sired explosion animations [18]. Sampling the animation algorithms
with different parameter settings, they present interactive thumbnails
of clustered animations as shown in Figure 7(b). In doing so, they first
reveal the breadth of possible animations to the user, and then support
drilling down, identifying and refining good animation candidates.

5.4 Steering

In some cases, a user might want to change the input parameter settings
while a simulation runs. We refer to this strategy as steering. While the
above strategies focus on changing and analyzing control parameters
in a systematic way, steering often addresses environmental and model
parameters.

We refer to steering environmental parameters as simulation steer-
ing, which for instance can be found in real-time simulators such as
flight or driving simulators. World Lines by Waser et al. [76] is a
prime example for this category. As shown in Figure 7(c), their sys-
tem lets the user place different barriers to contain flooding of a city
while the water is rising. Different possible performances can be com-
pared. Users can evaluate alternative scenarios for the assessment of
potential hazards by actively steering the simulation while it runs.

On the other hand, steering model parameters refers to on-the-fly
adjustment of numerical or other aspects of the computational realiza-
tion of the model. Examples include changing the grid size or time-
stepping parameters. Adjusting these parameters is known as compu-
tational steering [50].

It is worthwhile to notice that, while we differentiate between local-
to-global and steering, others have used the word steering to express
local-to-global search [45]. We argue that these two strategies are
fundamentally different as one is based on pre-computation or re-
sampling (local-to-global), while the other is inherently tied to adjust-
ing parameters during simulation runtime (steering).

6 ANALYSIS TASKS

So far, we have characterized how data can be produced from their
underlying models, and how visualization can support different ways
of navigating this data. A third important component is understanding
the tasks that users eventually want to engage in when doing visual
parameter space analysis.

In general, tasks regarding input-output models are often coarsely
classified as model building, model validation, and model usage [22].
Our work on visual parameter space analysis primarily focuses on
model validation and usage tasks for which a computational model
already needs to exist. In model validation, modellers question the be-
havior of the model itself and try to derive formative insights on how
to make it better, or summatively judge its performance. In model
usage, analysts/scientists use a more or less trusted model without pri-
marily questioning its validity. Visual parameter space analysis of the
model can then be used for various purposes. It might be used to guide
design and engineering processes, for instance, of a biopsy device as
discussed above [21]. In policy making, decisions can be informed by
simulating different “possible futures” [14]. Similarly, a model might
be used to study scientific phenomena such as bird moving patterns
that would otherwise be hard or impossible to study [10]. Or, it simply
might be used for training purposes emulating real systems in a simu-
lation [76]. While there is no clear-cut line between model validation
and usage, we found it a helpful distinction when discussing visual
parameter space analysis problems.

With the goal of providing better guidance for visualization re-
searchers and designers, we intended to characterize visual parameter
space analysis tasks on a more fine-granular level. Based on our own
work and the literature review, we describe a set of six recurring anal-
ysis tasks: optimization, partitioning, fitting, outliers, uncertainty, and
sensitivity. These tasks essentially cross-cut both model validation and
usage. Note that it is very common that several of these analysis tasks
co-occur in real application scenarios.

6.1 Optimization: “Find the best parameter combination given
some objectives.”

One of the most common tasks is to find an input parameter setting
that leads to satisfying output results. Oftentimes objective functions
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can be formulated and numerical measures be derived from the direct
outputs respectively. If the objective can be summarized in a single
scalar there is a multitude of numerical optimization strategies that
can be employed [15].

However, when there are multiple competing objectives finding the
best output often relies on subjective human judgement, a promise
that visual parameter space analysis holds. Consider the example of
a segmentation algorithm design as supported by our running example
Tuner [69]. On the one hand, 12 derived objective measures need to
be balanced. On the other hand, it is necessary to subjectively analyze
the performance of the segmentation as the objective measures are not
fully capturing the expert knowledge.

In some cases optimization might even be a completely subjective
process. Consider the above mentioned example of Fluid Explorer in
Figure 7(b): in this example, the optimization heavily relies on qual-
itative assessment of the outputs, the animated explosions. The users
are primarily interested in exploring the output space in order to iden-
tify a realization that most closely represents their envisioned goals.
A similar example is Marks et al.’s venerable work on Design Gal-
leries [44]. Both approaches rely on presenting thumbnails of images
or animations which are organized according to a similarity measure.

6.2 Partitioning: “How many different types of model behaviors
are possible?”

The goal of a partitioning task is to find a partitioning—or cluster-
ing, or segmentation—of the output space and relate that back to input
parameter settings. In doing so, it is possible to understand what dif-
ferent types of outputs can be expressed by the existing model. A good
example is Bergner et al.’s work clustering different fuel cell perfor-
mance graphs (model outputs), followed by mapping their cluster IDs
back into the input space [10]. The input space is shown as a 2D-
dimensional scatterplot with the sample points colored according to
clusters in the output space. This representation reveals “shapes” of
input parameter settings that lead to similar output results.

6.3 Fitting: “Where in the input parameter space would actual
measured data occur?”

During building and validating a model, it is of interest to see how and
whether real measured data can be expressed by the model. In that
sense, fitting represents an inverse problem: given model outputs only,
what input parameters would yield this behavior? This is also akin
to regression analysis in statistics or approximation and interpolation
methods in signal processing. While mathematically, this could be
formulated as an optimization problem, the user might need a differ-
ent mind-set and therefore a different visual encoding and interaction
design. Improving the understanding of differences between model
and reality helps to fit the model more closely to the underlying real
world system that is simulated. HyperMoVal [55] is an example that
specifically focuses on the validation of regression models. Hyper-
MoVal seeks to support the fitting task by simultaneously plotting the
regression model together with known validation data. This approach
allows users to analyze how well model outputs align with the real
system.

6.4 Outliers: “What outputs are special?”
The abstract task of finding outliers can have different specific mean-
ings in model usage and validation. When using a more or less trusted
model, it can refer to detecting anomalies in simulations, for instance,
to understand interesting and unique phenomena in weather forecast
models [56]. On the other hand, when building and validating a model,
it can refer to identifying implausible outputs that would not have been
possible in an underlying real system. The aforementioned example of
HyperMoVal [55], for instance, reports on a case study where an out-
lier turned out to be an implausible validation sample.

6.5 Uncertainty: “How reliable is the output?”

Understanding uncertainties in model usage and validation can come
in different forms [22]. In our literature analysis, we specifically iden-
tified:

• Aleatoric/statistical uncertainty (lack of knowledge modelled
through random variables, often found in environmental vari-
ables): “How much do (non-deterministic) runs with the same
parameter settings differ?”

• Structural uncertainty: “How much does the model differ from
reality?” (a form of epistemic uncertainty)

• Prediction uncertainty (of surrogate models): “How accurate are
predicted outputs?” (a form of epistemic uncertainty)

Understanding and integrating uncertainty into scientific, engineering
and design processes has gained considerable attention [22]. Yet, the
visualization and communication of uncertainty is done cautiously in
many systems. Consider, for instance, decision making tools such as
Vismon [14], a visual tool for fisheries data analysis. In the Vismon
project, the managers and stakeholders (the users of the system) were
already overwhelmed with the complexity of the data they need to
consider. Hence, the system was developed to bring aspects of uncer-
tainty to the forefront only when explicitly requested by the user. This
trend could change as the literacy about sources and quantification of
uncertainty sweeps through the different application areas.

6.6 Sensitivity: “What ranges/variations of outputs to expect with
changes of input?”

Mathematically, sensitivity might be expressed as an uncertainty of
the input parameter value, and is therefore often considered a subfield
of uncertainty quantification [22]. However, while some of the math-
ematical approaches of quantifying uncertainty might be applicable
to sensitivity analysis, the semantic understanding and articulation of
sensitivity is different. Hence, we find it helpful to articulate it as a sep-
arate analysis task. In the tools we have studied, sensitivity was never
merged or considered a form of uncertainty. In analyzing sensitivity
one distinguishes between global and local sensitivity [59], however,
we have only found support for local sensitivity in the tools we have
surveyed. Specifically, we have found sensitivity to be cross-cutting
through most other analysis tasks:

• Optimization: The question arising is the stability of the out-
put for slight changes of the optimal input parameters. Users
are willing to choose a less optimal solution, if it is guaranteed
that the solution is stable to small changes of input parameters
(specifically, environmental parameters that cannot be directly
controlled by the user)

• Partitioning: The question arising here is one of stability of par-
titions, i.e., how quickly or slowly does one partition change to
another when changing the inputs?

• Fitting: Given some specific measured data, the question is how
large a range of inputs will yield the model output representing
the data measured.

For analyzing sensitivity, it might be useful to predict outputs
with surrogate models. Reproducing a partial or full continuous-to-
continuous mapping between inputs and outputs supports a better un-
derstanding of local neighborhoods surrounding points of interests,
which in turn is crucial for sensitivity analysis. This approach is, for
instance, used in our running example Tuner, in which sensitivity anal-
ysis was identified as an important task. Figure 5 shows how Hyper-
Slices were used to navigate the continuous-to-continuous mapping
between inputs and predicted outputs.

7 DISCUSSION

Table 1 shows the final result of our iterative analysis of the 21 pa-
pers. The cells mark how we classified these papers according to our
framework. Naturally, the papers we analyzed were not written with
our theoretical lens in mind, necessitating interpretation and in-depth
discussions in their analysis. We see our main contribution in summa-
rizing, abstracting, and classifying different characteristics of visual
parameter space analysis into a holistic conceptual framework based
on these 21 papers.

After reviewing our framework’s relation to other theoretical visu-
alization models, we provide guidance on how to use the framework,
and discuss its focus and limitations.
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Afzal et al. [1] 2 * Y Y * Y Y Y Y Afzal et al.: Epidemic modeling and response evaluation [1]
Amirkhanov et al. [4] 1 * Y Y Y * Y Y Y Y Y Amirkhanov et al.: 3DCT ScanPositions [4]

Berger et al. [9] 1 Y Y Y Y P Y Y Y Y Y Berger et al.: Uncertainty-Aware Exploration [9]
Bergner et al. [10] 3 * Y * Y * Y * * * Y Y Y Y Bergner et al.: Partitioning for Computer Simulations [10]

Booshehrian et al. [14] 1 Y Y Y Y A * Y Y Y Y Booshehrian et al: Vismon — Fisheries Management [14]
Brecheisen et al. [16] 3 * Y Y * * Y Y Y Y not reported Brecheisen et al.: Parameter Sensitivity for DTI Fiber Tracking [16]

Bruckner & Möller [18] 1 * Y Y * Y Y Y Y Y Bruckner & Möller: Visual Effects Design [18]
Coffey et al. [21] 2 Y Y Y * Y Y Y Y Y Coffey et al.: Design by Dragging [21]

Guo et al. [26] 1 Y * Y * Y Y Y Y Y Guo et al.: Multivariate Linear Trend Discovery [26]
Konyha et al. [37] 2 Y Y * Y * Y Y Y Y Konyha et al.: Interactive VA of Families of Function Graphs [37]

Luboschik et al. [43] 1 * Y Y * Y Y A Y Y Y Y Y Luboschik et al.: Simulation trajectories [43]
Marks et al. [44] 3 * Y Y Y Y Y Y Y Marks et al.: Design galleries [44]

Matkovic et al. [45] 2 Y Y Y * Y * Y Y Y Y Matkovic et al.: Common Rail Injection System [45]
Matkovic et al. [46] 1 Y * Y * Y Y Y Y Y Y Y Matkovic et al.: Families of Data Surfaces [46]
Piringer et al. [55] 1 Y * Y * Y Y S Y Y Y Y Y Piringer et al.: HyperMoVal [55]

Potter et al. [56] 1 Y Y Y A * Y Y Y Y Potter et al.: Ensemble-Vis [56]
Pretorius et al. [57] 2 Y Y * * Y Y Y Y Y Pretorius et al.: Image Analysis [57]

Spence et al. [68] 1 Y Y Y Y * Y Y Y Y Spence et al.: Visualization for functional design [68]
Torsney-Weir et al. [69] 2 Y Y Y Y * Y * P * Y Y Y Y Torsney-Weir et al.: Tuner [69]

Unger et al. [73] 1 Y Y * * Y * * * Y Y Y Y Unger et al.: Validation of Geoscientific Simulation Models [73]
Waser et al. [76] 1 * Y Y Y * Y Y Y Y Waser et al.: World Lines [76]

Data Flow 
Model

(Sec. 4)

Navigation
Strategies
(Sec. 5)

Analysis Tasks  
(Sec. 6)

Additional details on Model/Data

Input Direct 
Outs

Sampling
Strategy

No. of Samples

Table 1. The table summarizes the 21 application/design study papers we analyzed in terms of our framework. A cell is marked with yellow when
a certain aspect of our data flow model is supported by the application. Blue marks indicate the main navigation strategy a certain tool follows.
Green marks the analysis tasks that are primarily supported. Secondary data operations/strategies/tasks are labeled with an asterisk (*). We label
a cell as secondary if a strategy or task was not explicitly targeted by the authors but might still be feasible with their tool. In the uncertainty column
we further differentiate between aleatoric (A), structural (S), and prediction uncertainty (P), as described in Section 6. Grey shows additional
information relevant to visual parameter space analysis.

7.1 Relation to Other Visualization Models

Our framework can be best contextualized using Munzner’s Nested
Model [51]. The Nested Model organizes the visualization design
and validation process into four levels: (1) domain problem char-
acterization, (2) problem/data/task abstractions, (3) visual encod-
ing/interaction design, and (4) algorithm design. Our work in general,
and the data flow model (Section 4) and analysis tasks (Section 6) in
particular, focus mainly on the abstraction layer (level 2). We ground
these abstractions in a thorough analysis (literature analysis and first-
hand experience) of domain problems (level 1). We also connect the
framework upwards to visual encoding/interaction design (level 3) by
characterizing navigation strategies (Section 5).

We also sought to organize our tasks and strategies using the multi-
level task typology proposed by Brehmer and Munzner [17]. This ty-
pology is organized as why, how and what and presents a set of abstract
tasks living in these categories. While we found the general categories
of why and how helpful in guiding our analysis, we could not directly
match our framework into this typology. Our work addresses analy-
sis tasks specific to visual parameter space analysis that have not been
discussed in their typology. We see this fact as a confirmation on the
many calls for more work on problem and task analyses [17, 47, 51].
Understanding the richness and variety of visualization problems, and
putting them together into a theoretical underpinning remains a major
challenge of our community.

7.2 Framework Usage

Our framework can be used in three different ways: (1) descriptive—
for describing a significant range of visual parameter space analysis
problems and solutions; (2) evaluative—to help assess design alterna-
tives; and (3) generative—to support creating new ideas [7, 8].

Descriptive Usage The terminology we proposed, the data flow
model, as well as the analysis task characterizations can be used to
abstractly describe domain problems for which visual parameter space

analysis solutions are generated. We refined and validated our frame-
work by describing visual parameter space analysis applications from
21 papers, and are therefore confident that the framework will be de-
scriptive for many other application examples as well.

We anticipate three major benefits when describing visual param-
eter space analysis work through our abstract lens. First, it will help
in problem-driven research, such as design studies [64], to abstractly
characterize the problem and translate domain knowledge into ac-
tionable design decisions. Second, technique-driven researchers can
use it to clearly characterize their goals and assumptions. Third, the
framework then can facilitate the communication between researchers.
Specifically, it will allow for an easier mapping between problem-
driven and technique-driven work. Additionally, it will allow to com-
pare and relate findings across different application domains, acceler-
ating progress in visual parameter space analysis research in general.

Evaluative Usage The navigation strategies and analysis tasks
we characterized will help to better assess multiple alternatives in de-
signing visual parameter space analysis tools.

Consider the example of deciding between local-to-global and
global-to-local navigation strategies. Global-to-local starts with a
broad overview over many/all possible model outcomes, while local-
to-global starts from a specific output and then allows the interac-
tive exploration of alternatives. From that perspective global-to-local
seems more powerful in many cases. However, this decision might
interact with other factors. For instance, deep immersion into specific
decisions might outweigh global exploration of alternatives in certain
situations. Also, such decisions depend on how complex the model
output is and how easy/hard it is to computationally derive objectives
and/or visually provide an evocative overview.

As intrinsically true for all conceptual frameworks, these identi-
fied strategies are naturally a simplification of the reality. For real
tools we found that aspects of local-to-global and global-to-local nav-
igation were often combined with different views supporting different
strategies. We marked these combinations with an asterisk in Table 1.
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However, having a clear characterization of strategies and tasks helps
to better reason about choices and eventually make more informed de-
sign decisions.

Generative Usage Finally, our framework can also be used to
generate and inspire new ideas. We believe that the framework is con-
crete enough to depict visual parameter space analysis problems and
solutions, yet general enough to inspire other areas as well.

While we use our input-output data flow model to reason about sim-
ulations and algorithms it could, for instance, be similarly used to de-
scribe and analyze the visualization process itself. The idea would
be to generate, that is, sample many different visual encodings and
then use derived quality measures to spot interesting ones. Some
of the pioneering work in visualization includes the study of trans-
fer functions for volume rendering (Design Galleries [44], visualiza-
tion spreadsheets [32], parallel-coordinate-style interfaces [71], Vis-
Trails [6]), the analysis of the rendering pipeline [38], graphs [33],
and the analysis of multi-variate data projections [66, 77]. Our frame-
work gives a new theoretical lens to think about this line of work and
might be used to generate new ideas that have not been thought of with
the traditional perspective.

7.3 Focus and Limitations

Our work is grounded in our own experience working in visual param-
eter space analysis, as well as a structured analysis of 21 core-relevant
papers. This approach comes with standard limitations of qualitative
theory building [19]. Selecting and coding papers, as well as generat-
ing the framework was inevitably shaped by our previous experience.

To keep the effort of our in-depth literature analysis manageable,
we selected 21 core-relevant papers with a specific focus based on our
definition of visual parameter space analysis. Nevertheless, there are
many other papers that are closely related to our endeavor, which is
reflected in the larger set of 112 papers that we initially gathered (see
supplemental material for a full list).

For instance, we specifically focused on visualizing relations of in-
puts and outputs sampled from computational models. However, also
measured data often comes in a similar form of two groups of related
variables. In statistics, they are usually called independent (analogous
to our inputs), and dependent variables (outputs). Consider, for in-
stance, Guo et al.’s work on sensitivity analysis, which is a task that
also appears in our framework. Their focus is on previously measured
data. The example in their paper relies on a benchmark dataset of mea-
sured diamond weight, color, clarity, and cut (independent var.), and
their relation to price (dependent var.) [27].

We further selected core-relevant papers with a focus on the inves-
tigation of input-output relations. Other visualizations of simulation
data focus mainly on representing the output space. Nocke et al., for
instance, primarily look at solutions of how to visualize complex out-
puts from climate simulations [54]. Given the complexity of represent-
ing even individual climate simulation outputs, they only marginally
focus on input-output relations. Smith et al. address the question of
morphing between shape objects resulting from computational design
models, such as car CAD models [67]. Their work is closely related
to our prediction strategy.

We mainly focused on model validation and usage tasks of an ex-
isting computational model. We did not explicitly include other model
building tasks, such as feature extraction, selection, or transformation.
Consider, for instance, Mühlbacher’s and Piringer’s work that dis-
cusses how visualization can support building regression models [49].

Finally, we specifically set out to study visual parameter space anal-
ysis. While this focus was intentional, we believe that our framework
might be useful for more general parameter space analysis scenarios
with a less substantial role of visual encodings as well. We also be-
lieve that the framework is general enough to be useful for the closely-
related areas discussed above, although these lines of work were not
part of our core literature analysis. Naturally, all possible generaliza-
tions cannot be tested in a single paper. Validating, refining, and ex-
tending our framework to include other problem areas is an interesting
step for future work.

8 RESEARCH GAPS AND FUTURE WORK

Through our practical and theoretical work on visual parameter space
analysis, we additionally identified three research gaps that are de-
scribed in the following. We believe that these gaps provide ample
opportunity for future work.

8.1 Data Acquisition Gap
As described above, the visual parameter space analysis pipeline starts
with sampling the parameter space. All following analysis steps rise
and fall with this crucial first step. However, only a few current tools
directly support sampling from within the tool (4/21 papers address
it as a primary goal). Reasons for not supporting sampling might
include potential engineering and organizational hurdles when inte-
grating the model with the visualization tool [63], high computational
costs of the sampling process, and the fact that proper sampling of
multi-dimensional spaces is not trivial. Given that model computa-
tions are usually expensive, sampling multi-dimensional spaces and
categorical parameters pose challenges. Often, it is not clear which
sampling strategy to utilize and simple uniform random sampling be-
comes the default, without a deeper understanding of its implications.
For instance, not every instance of a random distribution truly assures
a uniform covering of the space [53].

While such decisions might not pose any challenges to domain sci-
entists with a strong mathematical background, they do for others
without this background. Ingram et al. classified the latter as middle-
ground users [28]. These users would tremendously benefit from easy-
to-use visual parameter space analysis tools that integrate the sampling
step and help reveal underlying sampling assumptions and implica-
tions.

8.2 Data Analysis Gap
Integrating computational analysis methods into the visualization
pipeline also poses a major challenge for future work. While the pre-
dict step in our pipeline refers to the challenge of building good surro-
gate models, the derive step deals with how to derive good objective
measures. While domain knowledge is crucial to be successful, there
are a number of general strategies that have been developed in the data
analysis communities of statistics and machine learning. Yet, they are
similarly important for visual analysis.

18/21 of our analyzed papers described models with complex ob-
jects as direct outputs. For those, deriving is a crucial step to open up
more sophisticated visual analysis approaches. Deriving fosters more
holistic and powerful global-to-local analysis strategies. Deriving also
better supports most of the tasks we characterized in our work, such as
multi-objective optimization, partitioning, or sensitivity analysis.

The actual model in our pipeline is usually a black box to us as vi-
sualization researchers (and also might be to the domain experts them-
selves). In contrast, we argue that we need to better understand meth-
ods for deriving and predicting. Making these steps a white box to
us will allow us to better support a much richer set of analyses steps,
and help to make them accessible to middle-ground users as in the
DimStiller project [28].

The visualization community is already very active in this area, for
instance, by focusing on quality measures for multi-variate data rep-
resentations [11, 66, 77]. Also, many examples we analyzed already
utilize derived measures (15/21 papers). Given the richness of poten-
tial model outputs, however, we deem this only as a starting point for
an important area of future work.

8.3 Cognition Gap
Another major challenge is how to facilitate the cognitive understand-
ing of and navigation through multi-dimensional spaces. As humans
we are inherently 3D plus time beings. Naturally, understanding
higher dimensions seems inherently impossible. While this challenge
is shared with general multi-dimensional visualization, visual param-
eter space analysis comes with specific characteristics that are impor-
tant to understand.

Consider, for instance, multi-objective optimization. Pareto front
visualizations have been found to be helpful for such endeavors [69].
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A Pareto front basically connects all solutions where no objective mea-
sure can be improved without degrading another one, and therefore
gives useful constraints for output space navigation. Yet, while visual
Pareto fronts are straight-forward in 2D [69], it is not clear how to vi-
sually depict or even efficiently compute them in higher dimensions.
Vismon [14], for instance, samples specific multi-dimensional options
for direct comparison, not taking advantage of a higher-dimensional
Pareto front.

It is also not clear how many objectives in an optimization problem
can be cognitively handled by humans. Is this number, for instance,
following the general 7± 2 rule of capacity limits in human informa-
tion processing [48]? A possible approach might be Gleicher’s work
on generating projections according to the users’ needs [25]. Here the
user builds an analysis system one dimension at a time, allowing the
gradual increase of complexity.

8.4 Other Areas of Future Work
Beyond these gaps, conducting research in visual parameter space
analysis gives ample opportunity to study many previously identified
visualization challenges. Scalability considerations are inherently part
of many computational model analyses necessitating out-of-core, par-
allel, and cluster computing solutions [12]. On the other hand, the
rich set of potential visual and computational analysis methods for
parameter space analysis problems calls for good concepts of user
guidance [28]. Sophisticated provenance approaches [23] could help
in this regard to better track what parts of the parameter space have
already been explored and which not. Especially policy making ex-
amples such as Vismon [14], inherently involve multiple stakeholders,
giving ample opportunity to study collaboration processes [30]. Even-
tually, we also need a stronger focus on user evaluation [39]. Analyz-
ing the current literature revealed that most parameter space analy-
sis applications were evaluated with usage scenarios. These scenarios
make clear how data could be analyzed, but leave out how users ac-
tually used these tools themselves. Some notable exceptions, such as
Pretorius [57], give richer usage descriptions, where actual users used
the tool and reported anecdotal evidence [51].

Finally, we want to echo previous calls on the importance of
problem-driven work such as case and design studies [47, 64]. Our
work is grounded in the first-hand experiences reported in 21 of such
application papers. Deriving our higher-level theoretical framework
would not have been possible without this problem-driven work.

9 CONCLUSION

We have presented a conceptual framework that characterizes the data
flow, navigation strategies, and analysis tasks in visual parameter
space analysis problems. We hope that our work will establish a useful
abstraction of otherwise domain-specific concepts and will propel the
fascinating area of visual parameter space analysis to a fruitful area of
further visualization research.
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Figure 1: Glass fiber reinforced polymer (GFRP) visualized using the FiberScout system.

ABSTRACT

Advanced composites such as fiber reinforced polymers are promis-
ing candidate materials for future components as they allow inte-
grating the continuously rising demands of industry regarding cost-
effectiveness, function-orientation, integration and weight. The
most important structures of fiber reinforced polymers are the in-
dividual fibers, as their characteristics (stiffness, strength, ductility,
durability, etc.) to a large extent determine the properties of the final
component. The main contribution of this paper is the introduction
of a new system for interactive exploration and visual analysis of
fiber properties in X-ray computed tomography data of fiber rein-
forced polymers. The presented tool uses parallel coordinates to
define and configure initial fiber classes. Using a scatter plot matrix
linked to the parallel coordinates the initial classification may be
refined. This allows to analyze hidden relationships between indi-
vidual fiber properties. 2D and 3D views depict the resulting fiber
classifications. By using polar plots an intuitive rendering of the
fiber orientation distribution is provided. In addition, two modules
of higher abstraction are proposed: The Blob visualization creates
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a hull around fibers with similar characteristics. The fiber metadata
visualization allows to calculate overlays for 2D and 3D views con-
taining regional information of particular material characteristics.
The proposed system has been evaluated by two groups of domain
experts. Applying the presented concepts the user feedback shows
that the domain experts are now able to efficiently perform tasks
as classification of fibers, visualization of fiber lengths and orien-
tations, and visualization of fiber regions. The insights gained can
be forwarded to the design office as well as to material develop-
ment and simulation, in order to speed up the development of novel
composite components.

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1 INTRODUCTION

In modern industry a clear trend evolved of moving industrial re-
search towards new cost-effective, function-oriented, highly inte-
grated and light-weight components. This novel trend is mainly
caused by growing demands in terms of efficiency, environment,
safety as well as comfort. Especially the aviation industry and more
recently also automotive, leisure and other industries have found a
promising candidate class of materials meeting these high demands
in advanced composite materials.

Advanced composite materials and more specifically fiber re-
inforced polymers (FRPs) make up a growing proportion in high
tech industrial products. For example, in next-generation aircrafts,
more than 50% of the complete aircraft will be made of fiber re-
inforced polymers [24]. Due to the increasing share of advanced
composite materials also the demand for non-destructive testing
(NDT) methods is rapidly growing [20]. As the characteristics
of individual fibers in FRP components contribute to a great ex-
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tent to the final characteristics in terms of stiffness, strength, duc-
tility and durability, the domain experts are highly interested in
non-destructive, qualitative and quantitative analyses. For example,
quantities such as fiber orientation distribution (FOD), fiber length
distribution (FLD) or fiber content are highly important parameters
for the prediction of tensile strength of short-fiber reinforced poly-
mers [6, 28]. Therefore, getting insight into the characteristics of
individual fibers without destroying the specimen is crucial for do-
main experts to improve and optimize the material as well as the
design of new parts.

Industrial 3D X-Ray computed tomography (XCT) has rapidly
evolved in the field of non-destructive testing within recent years
and is now increasingly applied for quality control and metrology.
State of the art industrial XCT devices are capable of generating
high resolution volume data at voxel sizes of 1 μm or even be-
low. The main benefit of high resolution XCT volume data for NDT
practitioners is to get a comprehensive and highly detailed analysis
of the test specimen. However, due to the high information content
of the volume data, data exploration and visualization has become
a big challenge.

When analyzing an FRP sample the domain experts are inter-
ested in how the fibers are distributed according to length and ori-
entation. Depending on the given lengths and how the fibers are
aligned experts can then estimate and verify the material proper-
ties. They are looking for fiber layers (different by their orienta-
tion), resulting from the manufacturing process. Furthermore, it is
important for the experts which fiber characteristics a spatial sub-
region has. These insights can be used for subsequent simulations.
In addition another question for material experts is, how the indi-
vidual fiber properties relate to each other and which regularities
can be derived from them. Currently, the domain experts are using
specific software products such as VG Studio Max and its Materials
Fiber Composite Analysis Module [29] to examine FRP materials.
With this module, local and global orientations as well as concen-
trations of fibers can be displayed in a 3D view and a 2D slice view.
But it is not possible to search for specific fiber properties within
a sample and there is no visual highlighting or classification for
fibers. In addition, no dependencies between the individual fiber
characteristics can be investigated and no visualizations on a higher
abstraction level are provided.

Based on the domain-specific requirements the following tasks
for fiber characterization and fiber visualization using XCT have
been identified:
Task 1: Classification of fibers. The most important task is to
identify and visualize classes of individual fibers in XCT scans of
FRP samples. The domain experts need interactive visualization
techniques to define and configure fiber classes in accordance to
their specific properties and to individually render each class.
Task 2: Visualization of fiber lengths and orientations. Fiber
lengths and fiber orientations contribute to a large extent to the
characteristics of the final components such as strength or stiffness.
Therefore the domain experts need visualization techniques to ren-
der the fiber length and orientation distribution in the dataset.
Task 3: Visualization of fiber regions. The domain experts require
a quick and easy solution to identify and visualize regions with
similar fiber characteristics. A hull has to be determined, which is
enclosing regions of fibers with similar characteristics and clearly
differentiate themselves from other regions. The domain experts
need a method to analyze the manufacturing process in order to
determine modifications in the layer structure of the material. Fur-
thermore, methods are required to quickly explore the data and to
identify relationships between individual fiber characteristics.

In order to address the tasks identified by the domain experts, we
introduce the FiberScout, a system to visualize and explore XCT
scans of fiber reinforced composites. The analysis work flow starts
with an XCT scan of the specimen and thus the generation of data.

In a preprocessing step a label image is calculated from the original
gray value image, which is used as basis for all developed tech-
niques. The main contributions of this work are found in the de-
signed techniques and their domain specific integration as well as
in the solutions for tasks 1 - 3 identified by domain specialists (see
Figure 2):
Parallel coordinates and scatter plot matrix to classify fibers. In
order to analyze the internal micro-structure of the specimen, paral-
lel coordinates and a scatter plot matrix classify the fibers according
to fiber characteristics. The scatter plot matrix is used to refine the
classification results from the parallel coordinates in a further step.
Furthermore, the scatter plot matrix allows to reveal hidden rela-
tionships between fiber characteristics.
Polar plots to render fiber orientations. The fiber orientation dis-
tribution (FOD) is computed on a half sphere and visualized using
the azimuthal projection of the northern hemisphere on a 2D plane.
A spherical color map is integrated to color code the orientations of
fibers in 3D as specified by the domain experts.
Blob visualization and fiber metadata visualization to render
fiber classes. In order to address the problem of occlusion and
clutter when rendering datasets with high fiber content, a smooth
hull (blob) is extracted and rendered. It shows regions of fibers with
similar characteristics or fiber bundles. Each identified region is
visualized as a single blob. Furthermore regional meta information
of the fiber data is computed for the fiber metadata visualization to
quickly explore the dataset.

In the subsequent section we review the related work on fiber
analysis and fiber visualization. In Section 3 the data generation,
the datasets and the data preprocessing are described. In Section 4,
the visualization techniques to address task 1-3 are introduced. Sec-
tion 5 presents the evaluation of the visualization results. Finally,
we conclude and point out potential future work in Section 6.

Figure 2: Overview of the FiberScout visualization techniques.
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2 RELATED WORK

The related work for the proposed techniques is mainly found in
the visualization and analysis of material systems, parameter space
exploration as well as visual data exploration techniques.

2.1 Visualization and Analysis of Material Systems
Initial visualization techniques for non-destructive testing using in-
dustrial XCT data have been first introduced by Huang et al. [10]. A
method for visualizing a pre-computed feature volume with a time
series of domain parameters using 3D transfer functions was pre-
sented by Hadwiger et al. [8]. Based on this method, Fritz et al. [5]
introduced an approach to explore steel fiber reinforced sprayed
concrete and to quantify fiber properties such as fiber orientation.
They use a direction sphere histogram to visualize the fiber orien-
tation distribution. Furthermore direction transfer functions in the
orientation domain are used to visualize fiber orientations with user
specified colors. The field of application of Fritz’ work is in com-
parison to our application area of FRPs a completely different one.
We can calculate far more individual fiber characteristics of FRPs
and we can represent each characteristic in charts. Furthermore,
we can search for fibers with a highly specific set of fiber features
and classify them. Besides these differences, we employ several
abstract representations to visualize fiber characteristics and the de-
fined fiber classes.

Regarding orientation visualization, Robb et al. [21] presented a
method to calculate the local orientation of a fiber using a Gaussian
orientation space. Altendorf and Jeulin [1] compute the local direc-
tions in continuous space by analyzing the mathematical morphol-
ogy of images. A disadvantage of the local orientation analysis is
that a single fiber may have various orientations, as the calculation
is done on a pixel or voxel-basis. This is not suitable for visualizing
fibers as a whole object in our visualization pipeline.

The algorithm described by Salaberger et al. [22] and Teßmann
et al. [27] is used to extract individual fibers in our visualization
pipeline. Tests included in their work demonstrated that the meth-
ods produces results with accuracies of more than 95% correctly
detected fibers (mainly depending on the fiber content). Based on
this implementation further algorithms are applied for the calcu-
lation of fiber properties (e.g., fiber orientation, fiber length, fiber
diameter, fiber volume). Fiber orientations are then visualized in
3D space with a domain specific spherical color map based on the
work of Yamrom et al. [31].

2.2 Parameter Space Exploration
Parallel coordinates [11] and scatter plots [30] are popular tech-
niques for visualizing high-dimensional data sets. For example,
Craig et al. [4] use coordinated parallel views to query micro ar-
ray time-course data. The queries done in the coordinated parallel
view are then linked to a scatter plot. They conclude that the co-
ordinated parallel view is more appropriate for revealing details in
the data and supporting the discovery of less dominant patterns. S-
style axis layout parallel coordinates are used by Qu et al. [19] to
highlight wind directions for analyzing the air pollution problem
in Hong Kong. This approach is suitable for revealing correlations
between 1D directions and other variables. However for analyzing
3D directions together with spatial information conventional paral-
lel coordinates are more convenient. Kuang et al. [15] did a com-
parison of scatter plots and parallel coordinates. They found that
parallel coordinates show advantages in low dimensionality and low
density datasets, while scatter plots outperform parallel coordinates
in higher dimensionality and higher density datasets. Parallel coor-
dinates and a scatter plot matrix are integrated in our visualization
pipeline. We combine the two techniques using linking and brush-
ing [14], in order to explore the data in a more interactive way. The
advantages of these two techniques are exploited and hidden corre-
lations between individual characteristics are easier to detect.

2.3 Visual Exploration
Regarding clustering methods, Zhou et al. [33] introduced splatting
of the individual lines in parallel coordinates to reveal strong cor-
relations between the dimensions and to detect trends. In addition
Zhou et al. [32] proposed a novel method using parallel coordi-
nates for multi-dimensional transfer function design. Guo et al. [7]
present an effective transfer function (TF) design for multivariate
volumes, providing tightly coupled views of parallel coordinates
plots. Li et al. [16] showed a novel approach for space deforma-
tion to simulate a magnification lens on versatile volume datasets
and textured solid models. Tatu et al. [26] employ interestingness-
guided subspace search algorithms to detect a candidate set of sub-
spaces. The result of a k-means [13] algorithm turned out to gener-
ate robust consequences for initial automatic classifications. There-
fore, in our proposed work we follow this approach for the deter-
mination of fiber classes with similar characteristics. Jackson et
al. [12] present a tangible interface which allows a 3D interactive
exploration of thin fiber structures to understand patterns in fiber
orientation inside a volume.

3 DATA GENERATION AND PREPROCESSING

This section briefly explains how the industrial X-ray computed to-
mographic data is generated (see Section 3.1), which datasets are
used (see Section 3.2), and how the preprocessing step performs
calculations on fiber characteristics and individual fiber extractions
(see Section 3.3).

3.1 Data Generation
Industrial X-ray computed tomography (XCT) provides a 3D vol-
umetric representation of the scanned specimen. The specimen is
placed on a rotary table between an X-ray source and a detector.
The specimen is penetrated by X-rays. It attenuates the incident X-
rays according to material properties and penetration thickness [9].
The detector converts the radiation intensity into digital projection
images, which are finally reconstructed into a 3D volume data.

3.2 Dataset Descriptions
The two glass fiber reinforced polymer (GFRP) specimens to test
the fiber visualization pipeline are 614× 961× 600 and 608×
1411× 500 voxels in size with a resolution of 2 μm and 3 μm re-
spectively. We will subsequently call them dataset1 (see Figure 3A)
and dataset2 (see Figure 3B). The carbon fiber reinforced poly-
mer (CFRP) specimen we investigated in this work has a size of
600× 500× 600 voxels and is scanned with a resolution of 1 μm.
We will subsequently call it dataset3. All specimens are scanned
with a GE phoenix|X-Ray Nanotom 180.

Figure 3: 3D rendering of the datasets used in this paper. (A) GFRP
specimen (dataset1), 15916 fibers. (B) GFRP specimen (dataset2),
21751 fibers. (C) CFRP specimen (dataset3), 22656 fibers.
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Characteristic Description Unit

a11,a22,a33 The main diagonal elements of the
fiber orientation tensor [25]

-

ϕ , θ Spherical coordinates of a fiber orien-
tation

◦

Xi, Yi, Zi Cartesian coordinates of the ith fiber
center point, 0≤ i≤ m−1

μm

sL Straight length of a fiber μm

diameter Diameter of a fiber μm

volume Volume of a fiber μm3

Table 1: Most significant fiber characteristics, identified by the do-
main experts.

3.3 Preprocessing

In the preprocessing step the fiber characterization pipeline (FCP)
according to Salaberger et al. [22] is applied to the scanned XCT
volume data of the fiber reinforced polymer (FRP) specimens. In
the first step of this pipeline Gaussian blurring is applied to reduce
noise in the original volume data. In the second step the gradient
magnitude is computed, which is used as input for the computa-
tion of the Hessian matrix at each voxel. Using the Hessian matrix,
the gray value differences of a voxel compared to its neighboring
voxels are detected, which allows to deduce the main orientation
of fibers. The Hessian matrix also determines the medial axis of
the individual fibers as originally proposed by Teßmann et al. [27].
The intermediate results of the pipeline are the extracted individ-
ual fibers of the dataset given by their corresponding start and end
points. The characteristics of the extracted fibers are computed at
the same time as the individual fibers are extracted. Finally a label-
ing filter is applied to all the extracted fibers. In the labeled image
every voxel of an individual fiber is mapped to a unique label iden-
tification. In total, 25 fiber characteristics for each fiber are avail-
able. The most significant fiber characteristics for further analysis
are shown in Table 1.

4 VISUALIZATION

For understanding the micro structures of fiber reinforced polymers,
visualization techniques such as direct volume rendering of the ex-
tracted fibers do not satisfy the requirements of the domain spe-
cialists. This is due to clutter and occlusion. To overcome this
problem, the FiberScout system (see Figure 1 on the right) with
its visual fiber exploration techniques (Section 4.1) has been devel-
oped allowing interactive data exploration, clustering and classifi-
cation. Therefore, parallel coordinates (Section 4.1.1) are linked to
a scatter plot matrix (Section 4.1.2), the fiber class explorer (Section
4.1.3) as well as to 2D and 3D views. Furthermore, visualization
techniques have been developed to give insight into the clustered
fiber data at a higher level of abstraction. These widgets and tech-
niques include the fiber orientation distribution (Section 4.2), the
fiber length distribution (Section 4.3), the blob visualization (Sec-
tion 4.4), and the fiber metadata visualization (Section 4.5).

4.1 Visual Fiber Exploration

Right after loading the dataset into the visualization pipeline, an
overview of the data is presented in parallel coordinates (PC), in a
scatter plot matrix (SPM) as well as in a 3D view. Following the
visual information-seeking mantra described by Shneiderman [23],
the data is divided into subclasses (zoom and filter), which are dis-
played in turn in parallel coordinates and the scatter plot matrix.

The clutter and occlusion problem of the visualization may be con-
siderably reduced using additional user-specified queries to the data
(details on demand). Furthermore, the views of PC and SPM are
linked together. Changes done in the parameter space will imme-
diately be applied to the data (3D view and slice views) so that the
user is able to get a real-time feedback when querying the data. This
concept supports interactivity and makes the visual exploration pro-
cess clearer and simpler.

4.1.1 Parallel Coordinates for Fibers
Parallel coordinates (PC) [11] is a powerful visualization technique
using high-dimensional geometry for the analysis of multivariate
data. Unlike in the Cartesian coordinate system, the axes are set up
in parallel and equidistant to each other. A point in n-dimensional
space is represented by a polyline crossing the n parallel axes. The
position of the intersection on the jth axis corresponds to the value
of the jth coordinate of the point. In the end each multidimensional
point is represented by a polyline through the parallel axes. In the
proposed approach parallel coordinates are used to initially clas-
sify fibers according to their individual characteristics. The number
of fibers in a specimen ranges from several hundreds to hundreds
of thousands and more and thus results in cluttering and occlu-
sion. As too many lines are drawn between the parallel axes, the
exploration process becomes very inefficient. Following the nested
model for visualization design and validation [18] we examined our
implementation and explored Axis Order Selection for parallel co-
ordinates [19]. If axes representing fiber characteristics with hidden
correlations are placed near to each other, the relationships between
these characteristics are likely to become apparent. We then found
that we will lose other potential correlations between the rest of the
characteristics. After studying the coordinated parallel views for
exploratory analysis of micro array time-course data [4], we took
an approach which links a scatter plot matrix to enhance and refine
the classification results of the PC.

4.1.2 Scatter Plot Matrix for Fibers
In addition to parallel coordinates a scatter plot matrix (SPM) [30]
is used to visualize and reveal relationships such as dependencies,
patterns and even outliers among all of the fiber characteristics. Ad-
ditionally the scatter plot matrix serves as a refinement tool for the
selection obtained using parallel coordinates. The scatter plot ma-
trix used in our visualization pipeline consists of n(n−1)/2 scatter
plots organized in a matrix. n represents the number of fiber char-
acteristics used in the SPM. To avoid redundancy only the region
below the main diagonal of the SPM is filled. A histogram of each
fiber characteristic is shown in the main diagonal. Below this main
diagonal a scatter plot is drawn for each pair of the characteristics.
In the upper right corner an enlarged view of the selected scatter
plot is displayed. In the enlarged view, and in the small charts as
well, selections are done by drawing rectangles which will mark
the selected data in red (brushing). These selections will be applied
to all other scatter plots, the parallel coordinates as well as the 3D
view (linking). In order to suggest initial classes of fibers a k-means
algorithm [13] is used. The fiber characteristics depicted in the en-
larged view are taken as input data for the automatic clustering. The
total number of classes is specified by the user. Results of the clas-
sification can then be transferred to the Fiber Class Explorer or
further refined in the parallel coordinates or the scatter plot matrix.

4.1.3 Fiber Class Explorer
The fiber class explorer lists all created classes of fibers and allows
to add, modify or remove classes of interest. For each class the
user may assign individual names and colors. In addition, for each
class statistical information such as number of fibers (Count), the
percentage of the fiber count (Percent), the minimal, the maximal
and the average values of all fiber characteristics within a class are
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Figure 4: Fiber orientation distribution (FOD) in a PC plot. (A) Construction of the fiber orientations from Cartesian coordinates. (B) Global
FOD (dataset1). (C) FOD of a single class (dataset1).

calculated. By clicking on a class of interest its elements are re-
vealed and the individual properties of each fiber may be explored.
It is also possible to check the 25 fiber characteristics individually.
The checked features will be updated in the SPM and the PC im-
mediately.

4.2 Fiber Orientation Distribution (FOD)

To visualize the fiber orientation, spherical coordinates are used.
Figure 4A shows the construction of the fiber orientation from
Cartesian coordinates. Here θ represents the polar angle measured
from the zenith Z-direction. The azimuth angle ϕ lies in the XY-
plane and is measured from the X-direction. Because of symmetry
it is possible to depict all fiber orientations on a half sphere by spec-
ifying θ ∈ [0,π/2] and ϕ ∈ [0,2π). We discretize the northern half
sphere with a user defined resolution and compute the frequency

Figure 5: Visualization of the individual fiber orientations. (A) The
spherical color map. (B) A direct volume rendering of the fibers
using color-coded orientations (dataset2).

of each discretized direction. This builds up the fiber orientation
distribution (FOD). The azimuthal projection is later used to gen-
erate a 2D image of the FOD. Figure 4B depicts the global FOD
of dataset1. The annotations around the outer circle represent the
azimuthal angle and the annotations inside represent the polar an-
gle. The color bar ranges from gray to yellow where gray encodes
low frequency and yellow encodes high frequency. Gray is used to
depict the orientations where no fibers are headed. In addition to
the global FOD, we allow the computation of the orientation dis-
tribution for each manually defined class. The main orientations in
both Figure 4A and Figure 4B are easily visible as yellow spots. A
strong prevalence along the horizontal axis is present. The visual-
ization of the FOD, which defines the mechanical loading capacity,
is of great interest to the domain experts. We therefore applied a
spherical color map (see Figure 5A) where the colors are mapped
to the spatial fiber orientations. In order to highlight the X, Y and
Z-direction of a dataset, we mapped these directions to red, green
and blue respectively. Figure 5B shows a direct volume rendering of
fibers by color coding the orientations with the spherical color map.
This visualization allows easy identification of the fiber classes by
their color.

4.3 Fiber Length Distribution (FLD)
In addition to fiber orientation visualization, an automatic algo-
rithm is applied to classify and visualize the fibers according to
their length. The calculation of the fiber length distribution (FLD)
is very important for the experts to quickly represent the layout of
short or long fibers in the volume. Thus conclusions about the load-
ing capacity of the material can be drawn. Figure 6A shows the 3D
rendering of a fiber length distribution and Figure 6B shows the
corresponding histogram.

4.4 Blob Visualization
For the domain experts, it is important to gain a quick overview
of the shape of each fiber class and the layer structure in order to
analyze the material build-up of the final component. Due to the
issues of overlap and occlusion the separation of the different fiber
classes is frequently problematic using techniques like direct vol-
ume rendering. This task is becoming challenging especially for
datasets with a very high fiber density that contains thousands of
fibers. Based on the defined fiber classes in the Class Explorer we
introduce a blob visualization (see Figure 7) by applying methods
of implicit modeling as proposed by Bloomenthal et al. [3].

A blob in our application case is defined as a closed contour
surface surrounding all fibers of a class. It provides the domain
experts with an enclosure of the class and shows the spatial location
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Figure 6: Visualization of the different fiber lengths. (A) 3D ren-
dering of the fiber length distribution with the corresponding color
map. (B) Fiber length distribution of dataset1 shown in Figure 6A.

Figure 7: Blob visualization of dataset3. (A) 3D view of the dataset
with unclassified fibers in gray. (B) 3D view of the blue and orange
class with labeled blobs (blue Class 1, 9403 fibers (41.50%) and
(orange Class 2, 5831 fibers (25.74%)).

and shape of the class within the data. To construct the blob surface
we apply a distance-field based approach which is remotely similar
to the metaballs method proposed by Blinn et al. [2]. For every fiber
of the class we specify a line segment so that the start and the end
points of a line segment correspond to the start and the end points
of a fiber. This provides an approximation for straight and slightly
curved fibers. Taking all line segments we can define the shape of
a blob by the following distance function defined in 3D space:

min
i=1..m

di ≤ threshold

where m is the number of line segments, di is the Euclidean distance
to the given line segment and threshold is a parameter defining the
blob size. To obtain a mesh of the blob surface we uniformly sample
the distance function on a grid and then apply the marching cubes
algorithm [17] with a corresponding threshold value. In some cases
blobs determined from different fiber classes may overlap, which
results in unclear or cluttered representations. To solve this issue we
have modified the algorithm in a way that it removes overlapping
by adjusting the blob shapes (see Figure 7A and 7B). We resolve

conflicts for those points belonging to more then one blob using the
following approach: the point belongs to the closest blob with the
closest fiber. For all the other blobs we set the distance function to
infinity so that they do not include the point. This way the point will
belong to the blob with the closest fiber, and the areas where blobs
overlap will become separated based on the corresponding Voronoi
diagrams. We further allow the user to define the minimal distance
separating any pair of blobs. If the minimal separating distance is
introduced, the point in an overlapping area is not assigned to any
of the blobs if the difference between their distance functions in
this point is greater than the separation distance. Each blob in the
3D view is marked with a label containing the name of the class
and short class statistics: the number of fibers in the class and the
percentage from the total fiber count. In order to enhance the shape
perception of the blob, the user can enable a silhouette rendering
mode. This mode shows the outline of the blob and highlights its
sharp edges using black lines.

4.5 Fiber Metadata Visualization
As described in Task 3, domain users need a method to explore the
data in order to find regions of interest (ROI). Due to the high in-
formation content, visualizations based on the original volume data
are often not efficient. In order to provide a higher level overview
of the fiber characteristics’ distribution in the data we use a fiber
metadata visualization approach. We subsample the original vol-
ume data with a user specified scaling-factor which results in a
meta-volume, i.e., a volume made up of larger cells, typically 5 to
20 voxels each. We then calculate local characteristic values based
on the fibers which at least partially lie in each cell of the meta-
volume. The average value of each fiber characteristic is calculated
from all fibers of a cell. The individual fiber characteristics are
used as input data for calculating the meta-volume. We visualize
the meta-volume as a context for the original volume data in the 3D

Figure 8: Fiber metadata visualization of dataset3 in detail. (A)
Left: 3D view of the original volume data set with a red border
slice. Right: Slice view of the original dataset. (B) Left: 3D view of
the meta-volume overlaid on the original volume data. Right: Slice
view of the semi-transparent meta-volume overlaid on the original
volume data with a linear blending.
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view using multi-channel volume rendering (see Figure 8A) as well
as overlaying in the 2D slice views. Figure 8B on the left, shows
a meta-volume color coded according to the fiber orientation angle
θ . An opacity indicator takes care of the overall adjustment regard-
ing the opacity between the overlaid meta-volume and the original
volume data in the slice views. Figure 8B on the right, shows the
slice view of the meta-volume overlaid on the original volume data.
The metadata visualization allows the user to pick a fiber character-
istic of interest and to visualize the characteristic’s distribution as
a context. It enables a better visual exploration of the data by fa-
cilitating the identification of regions with similar or different fiber
characteristics.

5 RESULTS AND EVALUATION

The generated results are demonstrated on different types of FRPs,
i.e., one carbon fiber reinforced polymer and two glass fiber re-
inforced polymer specimens (see Section 5.1). A questionnaire
to evaluate all presented methods was prepared and filled out by
domain experts. The results outline the usability of the presented
methods from the perspective of domain experts (see Section 5.2).

5.1 Visualization Results

Original Volume Data: As shown in in Figure 2 (input data), fiber
classes or fiber orientations of dataset1 are difficult to identify.
Visual Fiber Exploration Method: After the visual exploration
process, the user is able to apply a multi-class rendering process
to the manually defined classes. All fibers are colored according
to their specific fiber class color in the parallel coordinates, scatter
plot matrix and the 3D renderer. Figure 1 on the right and in the
middle (blob visualization combined with multi-class rendering)
depicts the manually defined classes for dataset1. All the classes
can be clearly identified.
Orientation Identification: Figure 5 depicts the 3D view of the
extracted fibers (dataset2) color coded according to the spherical
color map (Figure 5A). The fiber orientations can be clearly identi-
fied. The color coding is applied to the 3D view and the 2D slices.
Fiber Length Distribution: An automatic algorithm is applied to
classify and visualize the fibers according to their length. Figure 6
shows the color coding of the extracted fibers (dataset1) with re-
spect to fiber length.
Blob Visualization: To provide the domain experts with an enclo-
sure of all their defined classes, we applied the concept of blob visu-
alization. This allows the domain experts to gain a quick overview
of the specimens layer structure and the shape of the fiber classes.
Figure 7 illustrates the blob visualization based on dataset3.
Fiber Metadata Visualization: A 3D view of the meta-volume
(dataset3) color coded according to the fiber characteristic θ is
shown in Figure 8 on the left. Orange represents a θ value between
0◦ and 10◦ and indicates that the fiber orientation is aligned to the
Z-axis. Blue represents a θ value between 80◦ and 90◦ and denotes
fibers which are aligned orthogonally to the Z-direction. The slice
views (see Figure 8 on the right) with reduced opacity information
clearly indicate a layer structure of the specimen.

5.2 Evaluation and User Feedback

The necessity of individual and interactive fiber visualizations orig-
inates from the requirement of non-destructive testing (NDT). Dur-
ing FiberScout development over a period of more than 18 months,
improvements of the fiber visualization pipeline were constantly
done together with the NDT practitioners. In order to get feedback
on the FiberScout system, we designed an evaluation questionnaire
with regard to the tasks defined by the domain experts (see Sec-
tion 1). The questionnaire is structured so that the experiences of
the participants with XCT are collected first. Then it is determined
how suitable PC and SPM is for classifying the fibers. In addition,

Figure 9: Averaged results of the evaluation questionnaire.

the usefulness of the statistical information of the fiber class ex-
plorer is determined. After that we tried to find out how the FOD
is applicable for displaying fiber orientations. It is then checked if
the fiber classes can be well distinguished by the blob visualization.
Finally, it is determined how well metadata visualization suffices to
indicate general fiber orientations. To evaluate the questionnaire we
choose four NDT practitioners, who are familiar with X-ray com-
puted tomography and its visual representations, and four material
scientists, which are experienced in analyzing fiber reinforced poly-
mers. The averaged and weighted results of the evaluation question-
naire are depicted in Figure 9. The red line represents the results
of the material scientists while the blue one displays the results of
the NDT practitioners. We use a Likert scale ranging from 1 to
5 to represent the user experience, varying from poor to excellent.
The fiber visualization pipeline on the whole received good feed-
back from the domain experts. The SPM was considered as best
suited for clustering fiber characteristics. By linking the SPM and
PC the relationships between the fiber characteristics can be easily
revealed. Outliers in the SPM are obvious to be detected. In ad-
dition the participants pointed out that further material phenomena
such as porosity are easily observable. The orientation visualiza-
tion is simple and self-explanatory. The main fiber orientation can
be easily determined using the polar plot for the FOD. Both the
NDT practitioners and the material scientists reckon that it is diffi-
cult to generate useful information of fiber characteristics using the
original volume data. Blob and metadata visualization also provide
valuable results for separating fiber classes. Furthermore, a differ-
ence in the results between NDT practitioners and material scien-
tists is found in the outlier detection using the blob visualization.
NDT practitioners perceive that it is obvious and simple to detect
outliers, while the material scientists score this technique low.

6 SUMMARY AND CONCLUSIONS

We presented the FiberScout, a visualization system for the visual
analysis of fiber characteristics in fiber reinforced polymers. The
user feedback shows overall good results from domain experts, es-
pecially concerning clustering with the help of the SPM with brush-
ing & linking and the visualization of the fiber orientation distribu-
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tion. The metadata visualization allows the user to quickly explore
the data and find regions of interest. The blob visualization is an ap-
preciated technique to represent regions with the same characteris-
tics in a volume. One shortcoming of the current implementation is
that the analysis is limited to approximately 100.000 fibers. In case
of one million fibers, the calculation times would last much longer.
This fact could be counteracted by parallelizing appropriate code
sections. Another problem relates to the PC and the SPM which are
cluttered if too many fiber features are selected. For future work,
the calculation of additional statistics and the selection of individual
fibers in the 3D view can be mentioned. The experts indicated that
combining the porosity information and the fiber characteristics of
a specimen would be important for them in the future.
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Abstract
We present GEMSe, an interactive tool for exploring and analyzing the parameter space of multi-channel segmentation al-
gorithms. Our targeted user group are domain experts who are not necessarily segmentation specialists. GEMSe allows the
exploration of the space of possible parameter combinations for a segmentation framework and its ensemble of results. Users
start with sampling the parameter space and computing the corresponding segmentations. A hierarchically clustered image tree
provides an overview of variations in the resulting space of label images. Details are provided through exemplary images from
the selected cluster and histograms visualizing the parameters and the derived output in the selected cluster. The correlation
between parameters and derived output as well as the effect of parameter changes can be explored through interactive filtering
and scatter plots. We evaluate the usefulness of GEMSe through expert reviews and case studies based on three different kinds
of datasets: A synthetic dataset emulating the combination of 3D X-ray computed tomography with data from K-Edge spec-
troscopy, a three-channel scan of a rock crystal acquired by a Talbot-Lau grating interferometer X-ray computed tomography
device, as well as a hyperspectral image.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—- I.4.6 [Image Process-
ing and Computer Vision]: Segmentation—Pixel classification

1. Motivation

Many scientific disciplines such as material sciences [CCK∗14],
medicine [GFL04] or geosciences [KLF∗15] attempt to gain novel
insights by acquiring and analysing two- or three-dimensional
datasets from a specimen of interest. In most cases, image analysis
techniques focus on data acquired by one scanning modality return-
ing a single data value for each spatial location. However, data from
single scanning modalities may return unclear or ambiguous re-
sponses, or may not deliver all information that is needed. Material
scientists, for example, often require the exact topological details
of a specimen along with minuscule structural deficiencies as well
as information on its chemical composition [AFK∗14]. To address
these demands, the analysis strategies are increasingly adapted to
measuring the same scene or specimen using multiple techniques,
resulting in a so-called multi-modal dataset, where multiple mea-
surement values are available per dataset location. At times a single
scanning modality can also result in multiple measurement values
per dataset location. Here, we will use the term multi-channel to
refer to any dataset or image where multiple values are available
per spatial position.

Image segmentation, the process of partitioning an image into
regions sharing common properties, is a very important step of the
image analysis workflow in many domains. In industrial applica-

tions it is for example essential in quantifying features of interest,
such as voids or defects, or constituent components of a material
system like fibers, particles or their surrounding material. Many
different segmentation algorithms have been developed, typically
tailor-made for a specific target domain. Adapting and parameter-
izing segmentation pipelines to new modalities or to different in-
puts is time-consuming and non-trivial. Typically no segmentation
expert is at hand to lend her expertise to the domain scientist. Of-
ten, there is also no objective measure available and therefore no
automatic optimization can be performed. Thus, domain experts
can only determine whether a segmentation result is meaningful
through visual inspection.

Considering multiple channels of information during segmen-
tation leads to complex algorithms with many input parameters
which require careful tuning. Domain scientists, being no segmen-
tation experts, typically have no guidance available for this tuning
procedure. The traditional way to determine the influence of the
segmentation pipeline’s parameters on the result is to manually per-
form iterative trial and error steps.

We therefore see a strong need for approaches to evaluate the
input parameter space and the result space of segmentation algo-
rithms for multi-channel images. A tool implementing these meth-
ods will allow domain experts to arrive at optimal segmentation
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results for their multi-channel images without ground truth infor-
mation available and without having advanced expertise in image
segmentation. We developed and implemented GEMSe to address
this problem. The main contributions of our work are found in the
following points:

• Methods for exploring and analyzing the input parameter and
result space of a segmentation pipeline.

• Implementing these methods in GEMSe, which guides users to-
wards choosing adequate segmentation parameter values leading
to optimal results for a specific kind of dataset.

• Evaluation of the usability of GEMSe in various case studies of
different application domains.

2. Related Work

Visually supporting segmentation algorithms of 3D data has been
one of the most researched topics in the visualization commu-
nity. The typical approach is through defining a transfer func-
tion [HKRs∗06]. For an overview of different transfer function ap-
proaches we refer the reader to a recent survey [AD10]. However,
transfer functions suffer from two problems. On the one hand they
are not very intuitive to use. On the other hand, they are not able to
properly segment very complex modalities.

The area of computer vision in general and medical imaging in
particular have been focused on developing very sophisticated seg-
mentation algorithms. One of the most widely used approaches to-
day is the random walker algorithm [Gra05]. Hence we are using
this algorithm in our approach. However, we are not limited to this
algorithm and it could be exchanged with any other. Visually sup-
porting such a segmentation pipeline has also been studied in the
visualization community. Saad et al. [SMH10, SHM10] were some
of the first to provide visual support to explore the capabilities of
the random walker algorithm. Their focus was to use the probabilis-
tic features of the algorithm in order to find anomalies in the seg-
mentation that might uncover tumor tissue. Praßni et al. [PRH10]
as well as Top et al. [THA10] introduced approaches to use the seg-
mentation uncertainty to query the user for input where the labeling
is too uncertain.

However, in this work we are not focusing on the uncertainty in-
formation of the algorithm thus far. Instead we are dealing with the
problem of finding good parameter settings for the segmentation
algorithm to perform well. Systematically exploring the parame-
ter space of algorithms has become an important research topic in
the visualization community over the last few years. Sedlmair et
al. [SHB∗14] present a recent overview and taxonomy of the ap-
proaches in the literature. Using this approach, Tuner [TWSM∗11]
as well as Paramorama [PBCR11] are possibly the two approaches
most closely related to our work.

Tuner was developed for medical image segmentation experts to
help them fine-tune a particular energy model. Hence, it required
a ground-truth segmentation or at least one objective quality mea-
sure in order to function properly. However, in our approach we
aim to support domain experts (that are not necessarily algorithmic
experts in segmentation) and we do not require any ground truth
or objective measure. Instead we navigate the user through seg-
mentation space and rely on visual inspection to help find proper

segmentations. Hence, the interfaces of Tuner and GEMSe have no
resemblance (although they provide similar functionality).

Paramorama [PBCR11] on the other hand lets the user browse
through a large collection of segmented images. A specialized lay-
out algorithm allows users to manually compare the label images
in one or more clusters. While they require using uniform sampling
on a fixed cartesian grid, which does not scale well, we can employ
any sampling method. They cluster by parameter values whereas
we cluster by result similarity.

The major difference of our approach to all these previous work
is that we (a) provide a general segmentation framework for many
different image modalities, and (b) that we are focusing on multi-
channel data. To the best of our knowledge, none of the previous
work has these capabilities.

3. Problem Characterization

The main challenge this work addresses is analyzing the input pa-
rameter space of segmentation algorithms for multi-channel data
and the set of potential label images that they can produce. This
problem can be categorized as visual parameter space analysis, as
systematized by Sedlmair et al. [SHB∗14]. The input is a multi-
channel, two- or three-dimensional dataset with an arbitrary num-
ber of channels per location. We will use the word image to denote
conventional 2D images as well as 3D volumes. Our segmentation
pipeline furthermore takes a parameter set as input, consisting of
various numeric or categorical parameters. A detailed description
of the particular parameter set we investigated is given in Sec-
tion 4.1. The output of one segmentation run is referred to as la-
bel image, which is a single-channel image. As derived output, we
calculate the count of connected components in the label image,
and record the time required by the segmentation algorithm. We
used the count of connected components, or object count, mainly
because it was used by the domain scientists we worked with, but
also because it was used in the Paramorama tool [PBCR11]. Mea-
suring the performance is intended for a trade-off analysis between
result suitability and algorithm speed.

We sample over the parameter space of this model, resulting in
a collection of label images, henceforth referred to as ensemble.
Each label image is linked to the parameter set that produced it and
its derived output. We provide a global-to-local approach to explore
this ensemble.

3.1. Tasks

Through collaborating with domain scientists working on segment-
ing industrial multi-channel datasets and analyzing their current
workflow and analysis needs, the following tasks to be solved were
identified:

• T1: Get an overview over the possible results produced by the
algorithm.

• T2: Analyze the influence of input parameters on the output im-
ages and their correlation to derived output.

• T3: Find stable parameter combinations which produce suitable
segmentation results as determined by visual inspection.

c© 2016 The Author(s)
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In terms of Sedlmair et al. [SHB∗14], T1 and T2 fall into the parti-
tioning category, as they are applied to get an insight into what vari-
ation of results can be achieved. T3 is a combination of optimiza-
tion and sensitivity analysis – users first want to arrive at ranges
of parameter values producing suitable results, and then identify
those regions where the results are insensitive to slight parameter
changes.

4. GEMSe Design

For a given multi-channel image we first perform preprocessing as
schematized in Figure 1. The analysis work is subsequently done
through the main interface of GEMSe as shown in Figure 2.

4.1. Preprocessing

Multi-Channel
Image

Parameter
Ranges

Sample
Count

Segmentation
Runs

#

Label Image
Ensemble

Exploration DataPreprocessingInput

Label
Image
Tree

Clustering

Derived Output
Calculation Charts

Sampling

Label Seed
Points

Figure 1: Overview over input, preprocessing pipeline and the data
explored by GEMSe.

As depicted in Figure 1, preprocessing starts by sampling the
parameter space of a segmentation pipeline. For this purpose users
can either use default parameter ranges or refine ranges if they al-
ready have a preconception of where suitable results are more likely
to occur, for example from a previous sampling run. We assem-
ble parameter sets according to the chosen sampling method and
parameter ranges. The result of a single run of the segmentation
pipeline is referred to as label image. We perform one segmenta-
tion run for each parameter set, resulting in an ensemble of label
images. We calculate the object count as the count of connected
components of all resulting label images, a simple derived output
which can help in determining the segmentation quality, as will be
shown in our case studies. On the ensemble we finally perform hi-
erarchical clustering using maximum linkage [FLPZ51]. For that
we initially set up each label image as leaf cluster and calculate
pairwise similarities as sum of the dice metric [Dic45] calculated
for each label. These preprocessing steps typically take a long time
(in the range of several hours to days depending on the used hard-
ware) and are therefore performed in advance and detached from
the result exploration.

For segmentation, we have adopted a multi-channel segmenta-
tion framework around the Support Vector Machine (SVM) clas-
sification algorithm and the Extended Random Walker (ERW)
segmentation algorithm [Gra05]. Our current sampling tool uses
this SVM+ERW-based segmentation pipeline but could be easily
adapted to run any other segmentation pipelines or algorithms.

Common parameters
SVM Csvm soft classification penalty

γsvm Gaussian RBF kernel width parameter
nsvm number of channels to consider

ERW βerw normalization neighborhood weight
γerw weight of prior model vs. neighborhood
merw max. number of iterations in linear solver

Modality-specific parameters
pcai number of PCA components considered for channel i

ERW wi channel i weight in neighborhood information
i ∈ [1..N], N = number of image channels

disti Distance metric used for channel i

Table 1: Parameters to our custom segmentation framework.

We have chosen both algorithms because they are successfully
used in many application domains, for example in medical sci-
ences [GFL04] and the geosciences [KLF∗15]. In this setup, there
are six common parameters and two to three additional parameters
per data modality in use to our segmentation pipeline, which are
summarized in Table 1. In addition to input parameters, the SVM
takes seed points for each label as input. We use the same set of
seed points, predetermined by the user, for each segmentation run
of the same dataset at the moment.

4.2. Result Exploration Interface

Figure 2 shows the main interface of GEMSe. Its layout is partially
fixed, meaning that the single views cannot be moved around, but
they can be resized to enlarge areas of interest. We initially consid-
ered a vertically panning screen similar to Bederson and Meyer’s
Pad++ system [BM98], so that we would not be limited to the size
of a single screen, and to better separate the different analysis lay-
ers. We found the downsides of such an approach, namely the lack
of overview and the confusion of the user having to switch through
many screens, to outweigh the benefits and therefore discarded that
idea.

In our interface there are seven linked views. A cluster tree view
(Figure 2a) displays the hierarchy resulting from our clustering,
the cluster example view (Figure 2d) displays characteristic im-
ages from the selected cluster, the detail view (Figure 2b) shows
a large version of the currently selected image, the slice view (Fig-
ure 2c) enables switching between the three possible axis-aligned
slice views as well as changing the currently shown slice, the his-
togram view (Figure 2g) shows histograms for input parameters and
derived outputs, the scatterplot view (Figure 2f) correlates input
parameters with derived outputs, and finally the favorite bar (Fig-
ure 2e) keeps track of preferred images. All interactions in an im-
age view are instantaneously propagated to all other image views
for better comparison. Label images are color-coded using a qual-
itative scheme from ColorBrewer [HB03]. the datasets we studied
so far only required 2-7 labels, so we do not see a problem in the
limitation to a maximum of twelve colors.

The cluster tree view (Figure 2a) shows an interactive tree view
of the cluster hierarchy. Visual appearance and interaction meth-
ods resemble those from the folder view in a file explorer such as
Windows Explorer. For each cluster a node with the number of con-
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Figure 2: Main interface of GEMSe: (a) cluster tree view, (b) detail view, (c) slice view, (d) cluster example view, (e) favorite bar, (f)
scatterplot view, (g) histogram view, (h) magic lens showing original image

tained samples is shown alongside a cluster representative image.
For a leaf node in our hierarchy, the representative is the label im-
age contained in it. For internal nodes, this image should give an
overview over amount and location of differences in the label im-
ages of this cluster. Our first idea was to show the medoid of the
label images in the cluster. Another option we considered was to
calculate an average image from all the masks. A medoid, being a
single label image, same as an average image, can not give an ade-
quate impression of the range of images contained in the cluster. An
average label image is furthermore not meaningful, since it does not
necessarily represent any single member of the cluster. We there-
fore implemented a visual metaphor following similar ideas as the
homogeneity view introduced by Malik et al. [MHG10]. All pixels
which have the same label in all samples retain that labeling, and all
other pixels are replaced with a marker color not used for labeling.
This directly visualizes the regions of the image in which a cluster
contains variation. The system tries to minimize the space used by
the tree. It automatically hides the preview images of parent and
sibling nodes when expanding a tree node as well as nodes that are
marked as unsuitable. The cluster tree view is mainly addressing
task T1. Since selections of a node in the cluster tree view result
in linked updates in all other views, it also acts as main interaction
hub. Task T3 is mainly solved through the interaction of all views,
therefore the cluster tree view plays a vital role in addressing it.

The cluster example view (Figure 2d) shows a number of exem-
plary label images from the currently selected cluster. These are se-

lected so that they represent the variation in the cluster, supporting
the overview task T1. The number n of label images to be shown
is determined based on the available space. Following the idea of
Krishnamachari and Abdel-Mottalebof [KAM99], we choose leafs
from a parent cluster in the same relation as the number of leafs in
each child cluster. In case we need to choose a single item from a
cluster which is no leaf, a random child is picked. This is executed
recursively, and will lead to n images, or less if the number of leafs
in the selected cluster is smaller than n.

Depending on the previous interaction, the detail view (Fig-
ure 2b) shows an enlarged version of either the cluster represen-
tative selected in the cluster tree view, or a label image selected in
the cluster example view. The border color of the view indicates
the current state, red indicating a cluster representative, yellow a
single label image. Next to the image additional detail information
about the parameter sets producing the label images in this cluster,
and the cluster ID are displayed as can be seen on the right side of
Figure 2b. Comparison to the original images is enabled through a
magic lens (Figure 2h). Additionally, users are presented with in-
teraction elements to positively or negatively rate a segmentation
result, and to navigate towards a specific label image, as can be
seen in the bottom of Figure 2b.

In the histogram view (Figure 2g), we followed the idea of
scented widgets [WHA07] and implemented histograms for all pa-
rameters and derived outputs which are connected to filter sliders
on the axes. The view is designed to address task T2, the analysis of
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correlations between clusters of label images and input parameters
or derived output. By default our histograms show the result count
on the vertical axis over the respective parameter or derived output
on the horizontal axis. The horizontal axis is scaled linearly or log-
arithmically depending on the way the parameter was sampled. The
data of the whole result space is shown in gray, data of the selected
cluster is shown in red, the same color that is used for highlighting
a selected cluster in the cluster tree view. When a single example
image is selected, its parameters are marked with yellow arrows on
the horizontal axis.

The slice view (Figure 2c) is intended for navigation through the
whole image. The original image is shown for comparison with
label images in the form of three axis-aligned slicer images, as do-
main experts are used to such slice views. Selecting one of the three
small slicers changes the slice axes for all previews. Providing a
3D view was considered in the design process of GEMSe, but we
observed that the domain scientists we collaborated with tended to
rarely use 3D visualizations of the dataset, and preferred slice views
due to their better interpretability. The favorite bar (Figure 2e) is
used for collecting intermediate results for later reference. With it
we address the issue that when analyzing any large collection, it is
easy to get lost or to loose track of previous findings. The scatter-
plot view (Figure 2f) shows a correlation of two attributes marked
in the histogram view, intended for addressing task T2. The data
points of the currently selected cluster, potential filter ranges and
example image selections are highlighted here as well.

Ensemble members or whole clusters can be marked as suitable
or unsuitable. This results in a color-coding on the x-axes of the
parameter histograms, which enables the correlation of input pa-
rameter ranges to segmentation quality.

5. Implementation

We implemented GEMSe as a standalone application in a custom
C++ application framework built on top of the Qt framework, us-
ing VTK [SML06] and ITK [YAL∗02] libraries for visualization
and image processing. The sampling of the segmentation parameter
space, resulting in the ensemble of segmentation masks, was imple-
mented inside the same framework. For the segmentation frame-
work we used the libSVM library [CL11], our extended random
walker calculation is built on top of the Eigen v3 linear algebra li-
brary [GJ∗10]. The source code of our tool will be made available
on https://github.com/3dct.

6. Evaluation

We applied two different types of evaluation to our prototype. First
we conducted usability interviews to refine visualization and in-
teraction methods. This lead to an improved version of our tool,
addressing the main concerns raised during these interviews. We
subsequently used this improved tool in several real world as well
as synthetic scenarios.

6.1. Usability Evaluation

GEMSe was developed in constant collaboration with domain ex-
perts in material science. Our design was therefore heavily influ-
enced by their input. To evaluate and improve its usefulness on
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Figure 3: Datasets used in our case studies: Attenuation image
(a1) and three K-Edge element maps (a2-a4) of the synthetic K-
Edge dataset. Attenuation image (b1) and dark field image (b2) of
the middle slice along x-y-axis of the rock crystal TLGI-XCT scan.
Channels 26(c1), 46(c2), 125(c3) and 176(c4) from the SalinasA
hyperspectral dataset.

a broader scale, we asked five visualization professionals to take
a look at our tool. Following the best practices established by
Nielsen [Nie00], we performed approximately one-hour long inter-
views over the course of four weeks. We used the small synthetic
dataset as shown in Figure 3a for the evaluation. We first introduced
each user to our tool. Then we encouraged them to interact with
the tool to get acquainted with the modes of interaction. During
this phase, our users implicitly addressed task T1 from Section 3.1,
namely to get an overview over the possible results. Subsequently
we posed two explicit exercises for them to solve through the help
of our tool: The first exercise consisted of finding out what was the
determining factor for the small amount of obviously unsuitable
label images in the synthetic example as shown in Figure 5(a5),
a specific instance of task T2. The second, more open-ended ex-
ercise was to find the visually most satisfying segmentation result
and deducing reasonable and stable parameters for segmenting this
dataset, basically task T3. We observed our users in performing
these tasks and took notes on how they were doing. Additionally,
we encouraged them to comment on their current thoughts. For all
sessions we recorded screen captures and the conversation. We used
this feedback to improve our software prototype, in order to arrive
at the most effective ways of visualization and interaction.

Users started their exploration with the root node of the hier-
archical clustering selected. To get an overview over the possi-
ble results, three of our users navigated down in the tree hierar-
chy, checking cluster representatives and continuing in the direc-
tion of the result which matched their expectation most. Interest-
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ingly, the benefits of the cluster example view were controversial.
Two users reported that they found the view tremendously help-
ful and used it as their main navigation cue, chose the label image
that they found most suitable, and navigated towards that image.
Two users did not use it at all and commented that they found it
confusing. We think this suggests different interaction preferences
in our users, both of which our tool supports. For the first exer-
cise, finding the parameter responsible for a cluster of unsuitable
label images, most of our users observed the histogram view while
switching between clusters. Within at most one minute all of our
users spotted the parameter γerw mainly responsible for the differ-
ence. Most users required encouragement by the interviewer to em-
ploy filtering, facilitated through the slider handles below the his-
tograms, which could also have helped solving this exercise. Once
aware, our users commented very positively on this feature, espe-
cially the immediate feedback in the cluster hierarchy. There, the
number of masks matching the current filter is shown alongside the
number of all masks in that cluster, and clusters with all contained
label images outside of the filter range are minimized. The scat-
terplot view, which would allow detailed correlation analysis, was
also only used after a reminder by the interviewer. It was not per-
ceived as that helpful. It might not be required at all, but might be
used more if it had permanent visibility and deeper integration into
the linked views.

For our second exercise, users continued their exploration as they
did while getting an overview. They typically arrived at a broad
range of parameters suitable for the dataset within a few minutes.
We received as common feedback that it was perceived as hard to
arrive at a final stable parameter region. A part of these users missed
methods to compare the parameter ranges in which favorites were
located. The second remark in this direction was that it is hard to
spot whether there are any bigger differences left in a cluster. Some
users commented that it would be useful to zoom in on a particular
subtree, for example when it has become clear that good results are
only to be found in one particular cluster. During these usability
sessions we had one large original image next to the detail view.
One common suggestion was to allow a more direct comparison
between the label images and the original image. The cluster rep-
resentative in general was perceived very helpful in determining
the variation inside a cluster. When comparing siblings in the hier-
archy, we made the observation that the cluster representative can
have a slight misleading effect. Users tended to interpret a repre-
sentative showing many differences as generally worse than one
with less differences. The full picture only unravels however when
considering the number of label images inside the cluster, as well
as the location of differences and the number of label images that
contributed to one particular difference. Two of our users suggested
to provide filtering capabilities directly in the result space. Their ar-
gument was that from looking at the original they already formed
a mental image of how the resulting label image should look like.
They thus wanted to restrict the shown results to the ones having
specific label values at certain positions, and excluding those results
which exhibited, for example, noise artifacts.

Based on the feedback from these interviews, we introduced sev-
eral improvements into GEMSe. To allow better comparison to the
original, we implemented a magic lens for overlaying the origi-
nal data in the detail view directly, as shown in Figure 2h. To im-

Rock Crystal Synthetic Salinas
Size 285x300x216 120x120x8 83x86
Channels 3 4 214
Labels 3 4 6
# of Samples 200 100 500
SVM C 0.01..100l - 10−5..10,000l

γsvm 10−11..1l - 10−11..0.01l

SVM n 1..2 - 1..224
βerw 0.1..1,000 0.1..1,000l 0.1..10,000
γerw 1..10 0.1..10 1..10
m 10..1,000,000l - 10..10,000
w 0..1 0.25..1/0..0.75 -

Table 2: Properties and sampling ranges of datasets used in our
case studies. l indicates a logarithmic sampling scale.

prove the navigation towards a final suitable parameter range we
introduced a coloring of the parameter axes in regions of good and
bad label images. Clusters can be marked as suitable or unsuitable
through interaction elements in the detail view. These markings de-
termine a coloring of the histogram axes in the histogram view. We
calculate the ratio of these suitable to unsuitable label images for
each histogram bin. If there are only suitable label images in a bin,
then it is marked green, and red if there are only unsuitable ones,
as shown in Figure 4(l, o). In between we map to grey and reduce
the opacity, so that an equal distribution will result in no coloring.

6.2. Case Studies

We have successfully used our tool on several datasets from differ-
ent domains. In the following paragraphs we will present three of
them. The details of these datasets are shown in Table 2.

6.2.1. Talbot-Lau grating interferometer X-ray computed
tomography data

Our main source of test datasets is Talbot-Lau Grating Interferom-
etry X-ray Computed Tomography (TLGI-XCT), which generates
three data channels: the attenuation as known from conventional X-
ray computed tomography, the differential phase contrast which is
related to the index of refraction and a dark-field contrast reflect-
ing the total amount of radiation scattered at small angles. We sup-
plied our tool to two domain experts working with phase contrast
datasets. We analyze the Rock Crystal dataset here, which depicts
a quartz structure with several cracks and pores inside. In this case
we used attenuation and dark field image, a slice of each is shown in
Figure 3b. The attenuation image alone can not resolve all cracks.
The dark field image can, but typically over-emphasizes them and
also shows high signal near the border of the crystal. The main goal
was to segment all cracks and pores in the crystal.

Starting with getting an overview according to task T1, the root
cluster as seen in Figure 2a shows variations of segmentation la-
bels for nearly every pixel of the image. The second child cluster
of this root is the minimized top cluster in Figure 4a. Its first child
a1, currently selected, looks promising, where most of the air is
correctly labeled (in green), as well as a big portion of the crystal
is labeled as such (in yellow). Its child node a2 shows solid round
structures labeled as cracks, which are also visible in the cluster
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Figure 4: GEMSe with the rock crystal dataset loaded. Clusters (a1-7) show an overview of the result ensemble. For the selected cluster a1,
the enlarged representative is shown in the detail view (b) along with exemplary label images (c) from that cluster. Histograms d1-d3 show
the distribution of γsvm for clusters (a2, a5, a6). Histograms d4-d6 show the distribution of the number of channels used in SVM for clusters
(a2, a3, a4). The filter set in d6 affects the cluster tree view (e), also clusters rated suitable and unsuitable are highlighted here, and their
parameter ranges are color-mapped accordingly in histograms d3 and d6.

representative in the detail view Figure 4b and marked there with
arrows. These are not actual crack structures but unwanted artifacts.
We therefore want to determine the parameter causing these to be
wrongly labeled, an instance of task T2. A look at the histogram for
the number of considered SVM channels d4 for cluster a2 reveals
that all masks in it were produced using only one data channel. This
could be a hint that considering all datasets for SVM will lead to
results without these artifacts. Cluster a3, the sibling of a2, does not
show these artifacts. Its SVM channel histogram d5 indicates that
some masks in that node were also produced using only one data
channel, but significantly more used data available in both chan-
nels. To determine this correlation more closely, we filter for a high
SVM channel number in histogram d6 of cluster a4. The cluster tree
view in Figure 4e shows the filtered cluster representatives, which
are calculated only from matching label images. There, the artifacts
are not visible anymore.

When looking at the node a5 we see that it contains masks which
all over-segment the crystal label, and in addition show a large ring
artifact which should be labeled as air, marked with an arrow. The
corresponding γsvm histogram d2 shows high values in this cluster.
γsvm influences the width of the bell-shaped surfaces in the Gaus-
sian RBF kernel used for separation in SVM. The underlying gray
plot representing the distribution in the whole result set shows that
the majority of masks with an SVM gamma parameter in the upper
third of the range are contained in this cluster. Its sibling a6, where
the ring artifact is still visible but less pronounced, shows values
in the middle of the range with the corresponding histogram d3.
Histogram d1 for node a2, whose representative does not show the
large ring artifact, was produced using low γsvm values. For suit-
able results, γsvm must therefore be selected from the lower end of

the range. The threshold between suitable and unsuitable results, as
determined through interactive filtering, is at approximately 10−9.

For further refinement of the parameter ranges, as required by
task T3, we rate clusters using the interaction elements shown be-
low the detail image in 4b. Rated clusters are highlighted in the
cluster tree view in Figure 4e and on the axes of histograms d3
and d6. For γerw, the weight factor of the prior model in the ERW,
we determine through filtering that very low values are produc-
ing noisy results. Values higher than 1.1 result in well-suited label
images. Higher values of the parameter Csvm, allowing soft mar-
gins but penalizing wrongly classified points in the SVM, tend
to slightly over-segment the crystal. For the other parameters the
situation is less clear, with this sampling we could not determine
a direct correlation with a suitable segmentation outcome. One
possibility would be to re-sample these with fixed values for the
most influential parameters γsvm and nsvm. The best label image we
could find had parameters βerw = 85.38, γsvm = 6.98, Csvm = 0.044,
γsvm = 3.13×10−11 and nsvm = 2.

6.2.2. Synthetic K-Edge Data

K-Edge absorptiometry is a new scanning modality in X-ray com-
puted tomography devices, which is enabled by a new generation of
X-ray detectors in computed tomography (CT) devices [FNMA06].
The X-ray attenuation image from a conventional CT device can
provide high contrast, but typically limited information on the el-
emental composition. K-Edge absorptiometry delivers elemental
concentrations at the cost of a higher noise level and reduced reso-
lution. In our synthetic dataset shown in Figure 3a, the whole spec-
imen is modeled to have the same average attenuation value, and
three K-Edge absorptiometry images each give the concentration
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of a single element. The sampling here was done with a limited
segmentation framework using a fixed prior model derived from
thresholding instead of SVM, thus the SVM parameters do not have
ranges listed in Table 2.

In the cluster representative of the root node as shown in Fig-
ure 5(a1) every pixel has the difference marker color. The first
overview conclusion, solving task T1 is therefore that inside this
cluster there is not a single pixel with a consistent label through-
out all images. Looking at the two child nodes, we see a divi-
sion between one larger, homogeneous and well-segmented clus-
ter of images in a2 and another node a5 showing highly varying
results. Starting a correlation analysis task T2, the γerw parameter
histogram b2 for node a5 reveals that those images were all gener-
ated with low γerw values. For node a2 on the other hand the γerw
values are all higher as shown in the histogram in b1. Apparently
low settings of γerw deliver invalid results for this kind of dataset.
The exact threshold value is determined using the filtering controls.
Figure 5(b3) illustrates this with a filter interval which masks out
all images in node a5 while still matching all label images of node
a2, as can be seen in the updated cluster tree view 5(c).

Inspecting the object count histogram 5(d) for node a1 shows
that while most label images contain four objects, some have a sig-
nificantly higher object count. Filtering for a high object count, and
using the slice view to change the slice axis, it turns out that in
some label images noise lead to separate objects. The histograms
reveal that these result from using one PCA dimension and a low
γerw value near the threshold defined before. Adjusting the γerw fil-
ter to a threshold of approximately 1 results in the images with high
object count being filtered out. This conclusion can be drawn from
the scatter plot in 5(e). For T3, we have already identified that γerw
is the parameter with most influence on the suitability of a seg-
mentation in this case. The PCA dimension turns out to have no
direct correlation with the noise – there are label images using only
one PCA dimension and no noise. When completely filtering out
the noise we arrive at a threshold for γerw of 3.3. Further analysis
shows that a minor influence on noisy pixels also came from βerw.
For the modality weights, we could not determine a clear correla-
tion to the segmentation quality for this dataset. Very low values
of weights were however only sampled in regions of a problematic
γerw value. Re-sampling with suitable γerw values might provide
additional information.

Using this dataset, we also performed a detailed comparison to
Paramorama [PBCR11]. For this specific test we employed uni-
form sampling. This is the only sampling strategy supported by
Paramorama, as its interface is tailored to it through their param-
eter tree, which is splitting the parameter space hierarchically. In
contrast to the test datasets provided for Paramorama, we are fac-
ing a higher number of parameters for our synthetic dataset: Six
for our overall algorithm and three for each of the two modalities.
Even when only two different values per parameter are sampled,
212 = 4096 segmentation masks are generated. When loading this
ensemble in Paramorama, even with the relatively large amount of
samples there is no chance to determine a specific threshold be-
tween suitable and unsuitable results for the γerw parameter. The
only thing to be determined is that the lowest value results in un-
suitable masks, while the highest value produces suitable masks.

With our tool and using the latin hypercube sampling strategy, we
could easily determine a narrow range for this threshold with only
100 samples.

6.2.3. Hyperspectral Data

We also tested our tool on the hyperspectral SalinasA dataset
[VMV] (Figure 3c). It can demonstrate the functionality of our tool
even for a high number of channels, and when ground truth is avail-
able. The main goal here was to verify the robustness of our seg-
mentation pipeline with ground truth data. For that we calculate ob-
jective measures (dice coefficient, overall accuracy and kappa coef-
ficient) as additional derived output for each of our sampling result
and show it in the histogram view as shown in Figure 6b-d. By fil-
tering for the highest dice metric scores, we can easily navigate to
the best segmentation result. The magic lens proves to be very use-
ful in this case by showing the result in comparison to the ground
truth, as can be seen in Figure 6a. Our best result achieves an over-
all accuracy of 0.8 and only slightly lower kappa coefficient of 0.79
in our ensemble, using an approximate 2 % of the image pixels ran-
domly chosen as seed points. As a general rule values over 0.8 are
regarded as strong classification results [CG08]. Considering that
we are using a general segmentation framework for multi-channel
data not finetuned for hyperspectral data, and without even having
refined the sampling to the most suitable ranges, this is a very good
result. A very recent segmentation framework also based on the
ERW and tuned for hyperspectral images by Kang et al. [KLF∗15],
achieves an overall accuracy of 0.88 and a kappa coefficient of 0.87
applied on a larger part of the same dataset, using 2% of the pixels
as training points.

Figure 7 shows a summary of the ranges used for the most in-
fluential parameters in all three case studies. In each instance 5-10
positive and negative examples were ranked, the axis shows the re-
sulting coloring. For the SVM channels, we can see that consider-
ing a higher number typically causes better results for both Salinas
A and rock crystal dataset. Considering the mixed coloring at the
higher end for the Salinas A dataset, we can see that highest values
however do not necessarily improve the results. An SVM C some-
where above 0.354 needs to be chosen for the Salinas A dataset,
where for the rock crystal dataset the best value is clearly closer to
the minimum of 0.0078, values around 1 are not well-suited. γsvm
values around 10−7 produce suitable results for Salinas A, while
for the rock crystal dataset best results from choosing it nearer to
10−12.

7. Conclusion and Outlook

We presented GEMSe, a tool for the exploration of the parameter-
and result space of multi-channel, multi-dimensional image seg-
mentation algorithms. Three tasks were identified in collaboration
with domain experts: getting an overview over the space of poten-
tial results, analyzing correlations between input parameters and
output, and finding stable parameter regions producing suitable la-
bel images. Our case studies conducted together with domain ex-
perts show the suitability of our methods for these tasks. Our clus-
ter tree view was perceived as very helpful in solving the overview
task. While the cluster representative image was shown to provide
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Figure 5: Cluster view (a) of the synthetic K-Edge dataset. Histogram b1 shows the γerw distribution of node a2, b2 that of a5, b3 demonstrates
the filtered histogram, (c) the resulting cluster tree view. Histogram (d) shows the object count for node a1, the scatterplot (e) correlates γerw
(x-axis) to the object count (y-axis).
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Figure 6: (a) label image with best kappa value, the ground truth
is shown in the magic lens for comparison. (b-d) objective measure
histograms.
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Figure 7: Comparison of ranked parameter ranges for all case
studies.

insight into the cluster variation, there is a need for researching fur-
ther methods of representing a cluster, for example through a scale
encoding the number of differences for each voxel. Linked His-
tograms and filtering have proven to be successful for analyzing
the correlations between input parameters and output, as shown in
Section 6.2.1 and Section 6.2.2. Finding stable parameter regions,
at least for the most influential parameters, was shown to be suc-
cessful through our rating, axis coloring and filtering interactions.
As can be seen in Figure 7 different modalities require different
parameter settings. Hence, there is a need for GEMSe in helping
practitioners find these settings without the help of segmentation
experts. Future work could look further into the multi-channel as-
pect, for example through integrating image fusion for comparison
visualizations, or through evaluating multiple different segmenta-
tion algorithms at once. The segmentation pipeline we employed
can produce a probabilistic result, another promising area for fu-
ture work is incorporating information on the segmentation uncer-
tainty, which these probabilistic results give access to. Regarding
clustering, one could investigate ways to combine clustering by re-
sult similarity as we have applied here, with clustering or splitting
by parameter values, or perform dimensionality reduction instead
of clustering.
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Figure 1: Overview of the PorosityAnalyzer workflow (gray boxes: input and intermediate data, dark blue boxes: stages of the workflow).

ABSTRACT

In this paper we present PorosityAnalyzer, a novel tool for detailed
evaluation and visual analysis of pore segmentation pipelines to de-
termine the porosity in fiber-reinforced polymers (FRPs). The pre-
sented tool consists of two modules: the computation module and
the analysis module. The computation module enables a convenient
setup and execution of distributed off-line-computations on indus-
trial 3D X-ray computed tomography datasets. It allows the user
to assemble individual segmentation pipelines in the form of single
pipeline steps, and to specify the parameter ranges as well as the
sampling of the parameter-space of each pipeline segment. The re-
sult of a single segmentation run consists of the input parameters,
the calculated 3D binary-segmentation mask, the resulting porosity
value, and other derived results (e.g., segmentation pipeline run-
time). The analysis module presents the data at different levels of
detail by drill-down filtering in order to determine accurate and ro-
bust segmentation pipelines. Overview visualizations allow to ini-
tially compare and evaluate the segmentation pipelines. With a scat-
ter plot matrix (SPLOM), the segmentation pipelines are examined
in more detail based on their input and output parameters. Indi-
vidual segmentation-pipeline runs are selected in the SPLOM and
visually examined and compared in 2D slice views and 3D render-
ings by using aggregated segmentation masks and statistical con-
tour renderings. PorosityAnalyzer has been thoroughly evaluated
with the help of twelve domain experts. Two case studies demon-
strate the applicability of our proposed concepts and visualization
techniques, and show that our tool helps domain experts to gain new
insights and improve their workflow efficiency.
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1 INTRODUCTION

Fiber-reinforced polymers (FRPs) have become of great practical
importance in modern-day industries because of their specific prop-
erties, their versatile processing, and application possibilities. As
described in a market report [1], the aeronautics, automotive, en-
ergy, and leisure industries are increasingly focusing on these high-
tech materials. Components, which are made of conventional ma-
terials (e.g., aluminum, steel), can be replaced by these new mate-
rials without impairing the functionality, while improving specific
properties (e.g., reduced weight) or even extending their function-
alities. For example, the proportion of fiber-reinforced compos-
ites in newly designed commercial aircrafts has increased to more
than 50 %wt. (percentage by weight) [28]. In order to fulfill the
high demands and quality standards in the field of aeronautics, in-
dustrial cone-beam X-ray computed tomography (XCT) is increas-
ingly used to measure FRP specimens. With XCT it is possible to
non-destructively identify and characterize material features such
as pores or fibers accurately, which is highly important for the do-
main experts as pores and fibers have a strong influence on the func-
tional and strength properties of the component. For example, in or-
der to predict a component’s behavior, experts are particularly inter-
ested in deriving pore characteristics as pore number, size, shape,
and distribution. However, the most important global characteristic
of a material that contains pores is its porosity value. The poros-
ity value is defined as the ratio in percent of the total cumulative
volume of all pores in the specimen to the specimen’s volume.

In material testing and quality control the porosity value is of-
ten used for deciding whether an expensive component passes a
quality control check or whether it is rejected. There exist vari-
ous destructive and non-destructive methods for the porosity de-
termination in FRPs. Destructive methods include wet-chemical
analysis using acid digestion and materialography in combination
with microscopic analysis [6]. Non-destructive methods, for exam-
ple, are ultrasonic testing and active thermography [17]. However,
these methods are often not as accurate as desired in critical areas
of the specimen. In contrast, modern XCT scanning devices are ca-
pable of delivering high resolution results down to a few microns.
When XCT is used for a precise porosity determination, the scan
parameters, the reconstruction methods, the image processing, and
especially the segmentation algorithms play a decisive role.

101

2016 IEEE Conference on Visual Analytics Science and
Technology (VAST)
23-28 October, Baltimore, Maryland, USA
978-1-5090-5661-3/16/$31.00 ©2016 IEEE

Authorized licensed use limited to: Christoph Heinzl. Downloaded on April 30,2021 at 10:16:28 UTC from IEEE Xplore.  Restrictions apply. 



2 DOMAIN BACKGROUND AND MOTIVATION

The porosity determination of FRPs by means of XCT is difficult,
since typical industrial components are composed of various mate-
rials. The wide variety of material combinations causes differences
in image quality regarding noise, sharpness, and artifacts. There-
fore, the XCT experts are required to adjust the parameters of their
segmentation methods for every material type.

To determine the porosity of an XCT scanned FRP specimen,
the domain experts are mainly using global threshold segmenta-
tion algorithms to extract the pores from the rest of the specimen
(fibers and matrix) [29]. The advantage of global-thresholding
segmentation-methods is the high processing speed and the small
number of parameters to tune. A representative of this family is
the Otsu segmentation algorithm [21]. This histogram-based seg-
mentation method has no parameters. But usually XCT datasets
are suffering from noise, artifacts (e.g., beam hardening), and low
resolution. Therefore, global-thresholding segmentation-methods
might produce a significant number of misclassified voxels, which
leads to an incorrect porosity value of the specimen. This problem
can be solved by using smoothing filters to reduce the noise and
more advanced segmentation methods. But these algorithms typi-
cally require additional parameters to specify. Tuning these input
parameters to find an appropriate parameter preset is essential.

Typically, domain experts start this task by empirically setting
initial parameters to the best of their knowledge and experience.
The result is then visually compared side-by-side to a reference seg-
mentation, which comes from the same dataset. Depending on the
result, the parameters are adapted. This iterative process is termi-
nated as soon as the domain expert considers the correspondence
between result and reference as sufficient. In addition, the compar-
ison of the results is further hampered by the different outcomes
which originate from different reference methods. During this pro-
cedure, it is important to record the parameter combinations and
the corresponding results to evaluate and compare them later. This
trial-and-error approach is not only time consuming, tiring, and of-
ten frustrating, but also generates modest results in many cases.

Taking all the factors mentioned above into account, it fol-
lows that there is a high demand for tools to set up segmentation
pipelines, to perform all necessary computations in batches, to man-
age and organize the resulting data, and to support the visual anal-
ysis of the data. With such tools available, domain experts can be
much more efficient in making a well-justified selection of the seg-
mentation pipeline for XCT-scanned FRP specimens. Moreover,
it enables the domain experts to base their decision-making on a
detailed analysis of various aspects of pore segmentation pipelines
and domain-specific requirements. Based on the demands of the
domains experts we identified the following tasks:

Task 1: Set up a segmentation pipeline where the parameter ranges
of all filters are adjustable and run the segmentation pipelines in a
batch process.

Task 2: Analyze and evaluate the candidate pipelines and compare
them with each other.

Task 3: Explore segmentation pipeline parameter trade-offs con-
cerning accuracy, performance, and stability.

Task 4: Generate accurate, robust, and reproducible results using a
specific segmentation pipeline preset for a class of datasets.

In order to fulfill these domain-specific demands we present the
PorosityAnalyzer, an interactive tool to visually analyze and explore
segmentation pipelines for porosity determination in FRPs. The
workflow of the PorosityAnalyzer is shown in Figure 1. The input
data are: a list of XCT-scanned FRP datasets and a list of reference
segmentations for these datasets. The data acquisition is described
in Section 4.

Our tool is divided into two modules: the computation module
and the analysis module. The computation module allows users to
set up and execute distributed off-line computations of porosity seg-
mentation pipelines (see Section 5). In the computation setup phase
the parameter spaces of the segmentation algorithms for the cho-
sen datasets are sampled and the resulting settings are stored. The
computations are then performed, resulting in sets of segmentation-
pipeline runs. For each run the segmentation mask, porosity value,
run time, and Dice coefficients describing the similarity between a
segmentation mask and a reference segmentation mask [9] are cal-
culated and stored. These computation results are used as input
for the analysis module (see Section 6), which provides tools for
visualization, exploration, and visual analysis of the segmentation
pipelines. The analysis module consists of four levels: pre-filtering,
overview, analysis, and visual examination. During a drill-down ap-
proach the user performs a visual analysis and an examination of the
data on each level by selecting the most interesting data portion and
passing it on to the next level. This allows a thorough visual analy-
sis from the data overview to the most detailed representations.

The main contributions of our work are in the visual knowledge
discovery, in the interactive visualization techniques on multiple
levels-of-detail, and in the fulfillment of the domain-specific re-
quirements for the analysis of pore segmentation pipelines for XCT
scanned FRP specimens.

3 RELATED WORK

The related work of the PorosityAnalyzer lies in the areas of 3D
image segmentation, visualization of multidimensional data, and
visual parameter-space analysis. A broad survey of 3D image seg-
mentation methods is presented by Wirjadi [33]. Gleicher et al. [12]
provide a detailed survey on methods for information visualization
and visual comparison. Scatter plots are often used as a visualiza-
tion tool for statistical, non-spatial, and multi-dimensional data [7].
A scatter plot matrix (SPLOM) organizes all possible combinations
of 2D scatter plots in one layout for providing an overview on mul-
tidimensional data, studying the correlations between data dimen-
sions, and locating clusters of data points. Elmqvist et al. [10] in-
troduced novel SPLOM navigation techniques using transitions for
an intuitive multidimensional visual data exploration. Gavrilescu
et al. [11] extended interface elements, such as sliders or transfer
function editors, with plots showing the magnitude of change in a
rendered image. This provides visual cues on the resulting effects
that would occur if a certain parameter is changed. We utilized a
similar approach with parameter-range sliders (see Section 6.3).

The related research in the area of porosity analysis and pore vi-
sualization in FRPs is given in the approaches by Reh et al. Poros-
ity maps [25] provide an overview of pore locations and density. A
mean-object visualization [24] aggregates all the pores in the spec-
imen in order to cluster pores by shape and size, and provides a
global overview of pore shapes in the data. Ushizima et al. [31] pro-
posed geometric and topological descriptors to enhance the estima-
tion of material permeability in complex porous micro structures.
Their analysis framework combines image processing, multi-scale
topological analysis, and the visualization of pore bodies.

Visual parameter-space analysis has a great potential to support
the validation and the use of simulation models. Sedlmair et al. [26]
developed an abstract conceptual framework for visual parameter-
space analysis problems to guide and systematize research endeav-
ors in this area. The authors’ framework covers a broad range of
tools and design studies from different application fields. Their
classification is based on three major components: a data flow
model abstractly describing analysis problems independent of the
application domain, a set of four navigation strategies supporting
the parameter-space analysis with visualization tools, and a char-
acterization of six analysis tasks. Our work fits into this frame-
work and fulfills the following classification criteria: it is a data
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flow model with an integrated sampling step, utilizing derived mea-
sures. The navigation strategy is global-to-local. The application
area is engineering and the analysis tasks are optimization, parti-
tioning, and sensitivity investigation.

Another related work in the field of visual parameter-space anal-
ysis was done by Piringer et al. [22] who use multiple 2D and 3D
projections of an n-dimensional space for regression-model simu-
lations in car engine design. Their approach compares known and
predicted results as well as results of multiple models, analyzes re-
gions with a bad fit, and assesses the physical plausibility of models.
Berger et al. [4] extend this work for uncertainty-aware exploration
of continuous parameter-spaces. They guide the user to potentially
interesting parameter regions and visualize the model predictions’
uncertainty in 2D scatter plots and parallel coordinates. Coffey
et al. [8] utilize a local-to-global approach for exploring large de-
sign spaces in simulation-based engineering, the design of visual
effects, and other tasks that require tuning parameters of compu-
tationally intensive simulations. Pretorius et al. [23] developed a
plug-in for the CellProfiler biomedical-image analysis-framework
that regularly samples continuous parameters of an image process-
ing pipeline. Paramorama, a visual analysis tool, is used to study
relationships between the input parameter-space and image-based
outcomes. Results are hierarchically-clustered based on the param-
eter values and can be queried and laid-out side-by-side for a visual
comparison. Bergner et al. [5] introduced ParaGlide, a visualization
system for a systematic interactive exploration of parameter spaces
of multi-dimensional simulation models.

The Tuner tool by Torsney-Weir et al. [30] is somewhat similar
to PorosityAnalyzer and also addresses the problem of parameter-
finding in image segmentation algorithms and finding optimal al-
gorithm presets. The parameter space of the evaluated algorithm is
parsed, and off-line computations are performed. Dice coefficients
are utilized to evaluate the quality of the segmentation results com-
pared to the ground-truth segmentations. Finally a Pareto panel and
HyperSlice [32] views are used for the visual analysis and naviga-
tion. In comparison to Tuner, there is a list of important differences
that sets our work apart. First, the potential users of Tuner are
segmentation-algorithm developers, i.e., people who are familiar
with all the implementation details and inner workings of segmenta-
tion algorithms. PorosityAnalyzer’s main users are domain experts,
i.e., segmentation-algorithm consumers, who are required to solve
specific tasks involving segmentation algorithms. Second, the goal
of Tuner is to find optimal parameter settings for one segmentation
algorithm. The main goal of PorosityAnalyzer is to evaluate and
compare many different segmentation pipelines in order to find the
optimal pipeline and preset. Third, optimizations in Tuner are based
on a ground-truth segmentation mask. We are mainly interested in
evaluating segmentation pipelines based on the domain specific cri-
terion of the porosity value. In addition, we consider the reference
segmentation mask and run time of the algorithm. Fourth, Tuner is
designed to work with one algorithm and one dataset at a time with
the possibility to switch datasets sequentially. One important design
principle of PorosityAnalyzer is to provide off-line computations
and visual analysis for multiple segmentation pipelines and multi-
ple datasets at once. Fifth, there is a clear distinction in how the
sensitivity analysis is performed. Tuner is using uncertainty/gain
values provided by a Gaussian process model. Interactive sensitiv-
ity analysis is performed in the following way: as the user changes
a particular parameter value all plots dependent on it change inter-
actively, which reflects the algorithm’s sensitivity to this parame-
ter. PorosityAnalyzer mainly uses box plots, histograms, statistical
contours for porosity segmentations, and parameter-range sliders
(PRS) to evaluate a segmentation pipeline’s sensitivity and robust-
ness. Finally, in the investigation phase we are utilizing a SPLOM
in the analysis module, while Tuner is relying on the HyperSlice
visualization.

Figure 2: A typical 3D volume dataset with pores (black) from the
aeronautic industry (E5 high, left: 3D volume, right: 2D slice).

Table 1: Characteristics of the FRP datasets used in this work.

Dataset
Name

XYZ Dimensions
in Voxels

Resolution
in µm

Reference
Porosity

E3 low 749x304x1396 10.0 0.965%
E4 low 711x302x1423 10.0 0.394%
E5 high 756x262x1472 10.0 6.668%
E6 high 835x298x1653 11.5 6.819%
E7 high 842x288x1706 11.5 8.657%

WChem low 1365x421x1674 10.0 0.501%
PorePhantom 173x230x140 11.0 6.123%

4 DATA ACQUISITION

Our domain experts mainly deal with fiber-reinforced polymers
(FRPs). In this work we use seven carbon fiber-reinforced polymer
(CFRP) specimens which were measured with a GE phoenix—X-
Ray Nanotom 180 XCT device. A typical CFRP dataset (E5 high)
is shown in Figure 2. Due to the different methods for reference-
porosity determination we categorized the datasets into two classes.
In the subsequent sections, we will refer to these classes as: aero-
nautic industry and wet chemical analysis scans. The specimens are
named accordingly (Ex , and WChem low). In addition, we inves-
tigated the PorePhantom dataset where the pores were artificially
included by the domain experts. Table 1 provides an overview of
the used datasets.

5 COMPUTATION MODULE: SETUP OF PORE SEGMENTA-
TION PIPELINES

According to the domain-specific requirement, to be able to batch-
process various segmentation pipelines (see Task 1, Section 2), we
designed a computation module which provides a graphical user
interface (GUI) for connecting segmentation pipeline filters within
the user-defined parameter-spaces in a simple way. The core of
the computation module is the batch processing of the created seg-
mentation pipelines and the data storing of the calculated results.
Starting from an identical database (XCT datasets of the FRP spec-
imens), the module can be run on different computers simultane-
ously, in order to distribute the computation load. For this purpose
we designed a file and folder structure for storing the results of the
individual computers in a shared folder (see Figure 3).

Each segmentation-pipeline run of the batch process stores the
information about the used computer (e.g., CPU type), the assem-
bled segmentation pipeline and its parameters, the calculated re-
sults (e.g., run-time, the porosity value), and the binary segmen-
tation masks. In the background, this module takes care of the
proper filter linkage by setting the necessary intermediate connec-
tion steps (e.g., ensuring correct data types). Thus, the required
user-input is kept very small. To set up a batch computation, the
user has to specify the locations where the data are stored. The
batch-computation settings-file (see Figure 4A) contains all the pre-
viously investigated pipelines. The pipelines in the file will be auto-
matically loaded to the segmentation-pipeline batch-table (see Fig-
ure 4C). Once the paths and the folders are specified, the different
segmentation pipelines can be created (see Figure 4B).
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Figure 3: Underlying file and folder structure of the PorosityAnalyzer.
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Figure 4: The computation module to set up and batch-process seg-
mentation pipelines. Folder and file paths (A). Drag and drop area (B)
to assemble a segmentation pipeline (datasets (1), filters (2), pipeline
(3)). Accepted pipelines (4) are shown in the batch table (C).

We initially pursued a text-based approach to create a segmen-
tation pipeline. The individual filters of a pipeline and their pa-
rameter ranges were manually entered in the columns of the batch
table. The involved experts criticized this approach because of the
cumbersome, complicated, and error-prone data entry. In order to
overcome these problems, we opted for a drag-and-drop interface
to set up the segmentation pipelines. A segmentation pipeline may
consist of any number of steps. To set up a pipeline, a dataset icon
from the dataset list (1) is selected and positioned into the first
slot of the pipeline (3). This drag and drop process is repeated
for the desired number of filters/steps (2) to build a functional seg-
mentation pipeline. After the pipeline assembly is completed, the
parameter-space sampling is specified for each filter. For this pur-
pose the filter icons in the pipeline can be clicked and the corre-
sponding parameter-space dialog (PSD) opens. Here, the sampling
method (regular sampling or random sampling) for each step and
the corresponding parameter ranges are specified. In the case of
regular sampling the user defines the n-dimensional grid granular-
ity by simply specifying the range and the number of samples of
each filter parameter. n is the number of input parameters, which
is in the range from zero to seven for the pipelines we tested. This

causes the parameter step-size to be fixed to the ratio between the
parameter range and the number of samples. In the case of random
sampling the samples are selected arbitrarily inside a user defined
parameter range.

The first version of the PSD was designed as a simple input inter-
face for defining the parameter ranges of a filter. However, this dia-
log was not well accepted by the domain experts with the argumen-
tation that it does not preserve the context of the pipeline’s dataset,
which makes the parameter-range specification difficult. Therefore,
we provide within the PSD an XY-slice of the dataset, additional
dataset information (e.g., dimension, resolution), the correspond-
ing gray-value histogram (with labeled air/pore and material peaks),
and a filter description. The created pipelines can be added (4)
to the segmentation-pipeline batch-table (see Figure 4C). Pressing
the “Run Calculations” button executes the defined segmentation
pipeline on the machine. By repeating this process on other ma-
chines, the calculation of different segmentation pipelines can be
distributed. The calculated results of the different batch-processed
segmentation pipelines serve as input for the analysis module (see
Section 6).

The PorosityAnalyzer primarily uses the Insight Segmentation
and Registration Toolkit (ITK) 4.6 [14] and its filter implemen-
tations. In our demonstrator framework we used five smoothing,
nine non-parameterized segmentation [2], and ten parameterized
segmentation filters. A detailed list of the implemented filters is
presented in Table 2.

Table 2: Applied filters in the PorosityAnalyzer tool.

Filter Name Abbreviation Reference

Sm
oo

th
in

g
fil

te
rs

Gradient Anisotropic Diffusion GAD [14]
Curvature Anisotropic Diffusion CAD [14]
Recursive Gaussian Gauss [14]
Bilateral Bilat [14]
Median Median [14]

N
on

-p
ar

am
et

ri
c

se
gm

en
ta

tio
n

fil
te

rs

Otsu Threshold Otsu [2]
IsoData Threshold Iso [2]
Intermodes Threshold Inter [2]
Maximum Entropy Threshold MaxE [2]
Minimum Threshold Min [2]
Moments Threshold Mom [2]
Renyi Threshold Renyi [2]
Shanbhag Threshold Shan [2]
Yen Threshold Yen [2]

Pa
ra

m
et

ri
c

se
gm

en
ta

tio
n

fil
te

rs

Binary Threshold Binary [14]
Robust Automatic Threshold Se-
lection RATS [16]

Multiple Otsu MOtsu [20]
Watershed (Beucher) MW B [3]
Watershed (Meyer) MW M [3]
Confidence Connected Confi [14]
Connected Threshold Conn [14]
Neighborhood Connected Neigh [14]
IsoX Threshold IsoX –
Maximum Distance Fhw [15]

6 ANALYSIS MODULE: VISUAL ANALYSIS AND EVALUA-
TION OF PORE SEGMENTATION PIPELINES

The analysis module provides exploration and analysis methods for
the large number of results generated by applying multiple segmen-
tation pipelines with varying presets to a set of different datasets.
The overall purpose of this module is to provide the functionality
needed by the domain experts to efficiently and conveniently per-
form their analysis.
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Pre-Filtering Analysis Visual 
Examination Overview 

Figure 5: Data representation stages of the analysis module.

In order to enable an intuitive visual-analysis workflow for seg-
mentation data, we follow the “overview first, zoom and filter,
details-on-demand” design principle [27]. The data are analyzed
on four levels-of-detail: tree view (pre-filtering stage), overview
comparative matrix (overview stage), scatter plot matrix (SPLOM)
and parameter-range sliders (PRS) (analysis stage), and compara-
tive visualizations using 2D slices and 3D views (visual examina-
tion stage). Figure 5 depicts the four data representation stages.
In each stage a portion of the data can be selected. First, the
user loads all generated segmentation data and pre-filters particular
segmentation pipelines and datasets if necessary (see Section 6.1).
The overview comparative matrix shows the deviations of the seg-
mentation pipelines’ porosity values from the porosity values of
the reference methods (see Section 6.2). Here, the user selects a
pipeline/dataset combination and analyzes it on the level of the in-
dividual segmentation runs (see Section 6.3). Finally, the user visu-
ally verifies and compares the selected segmentation runs side-by-
side by means of 2D slices and 3D views (see Section 6.4). By us-
ing the interconnected data representation stages, the requirements
of the domain experts, i.e., analysis, evaluation and comparison of
the candidate pipelines as well as segmentation pipeline parameter
trade-off analysis (see Task 2 and 3, Section 2) are met.

Initially, the individual views of each stage were displayed hi-
erarchically in tab views. With the separation into the tab views
the domain experts experienced problems as the context to the pre-
viously selected data is lost. Therefore, we decided to present all
views of the individual stages at the same time. When selecting
data in one view the data in all other views are automatically up-
dated. All views can be positioned and resized individually. In the
following subsections we describe each stage of the PorosityAna-
lyzer visual-analysis workflow starting from an overview to more
detailed representations.

6.1 Pre-Filtering Stage

After loading the segmentation data into the analysis module we
provide a collapsible and expandable side-panel for pre-filtering
the data. The loaded segmentation data are presented in a tree
view. Here, the top-level tree-items can be grouped either by the
segmentation-pipeline name or by the dataset name. If the top-
level items are grouped by dataset name, the second level items
will be grouped by segmentation pipeline name and vice-versa.
Expanding the second-level tree-items reveals all the available in-
formation about the individual runs for the chosen segmentation
pipeline/dataset combination. The user can pre-filter the data by se-
lecting the segmentation pipelines or datasets. The contents of the
tree view and the overview comparative matrix (see Section 6.2)
are dynamically updated, whenever the filter settings are modified.

6.2 Overview Stage

Since the domain experts are primarily interested in the poros-
ity value of a dataset, we first calculate statistical informations
for the resulting porosity values of all runs of each segmentation
pipeline/dataset combination and their deviations from the refer-
ence porosity values. Based on these statistical values, we provide
a high-level overview visualization, to allow domain experts a first

 Overview Stage 
A 

B C 

D 

1 

2 

Figure 6: The overview comparative matrix (A) in deviation mode (1)
with the deviation color map (2). Collapsed deviation comparative
matrix with selected “IsoData Threshold” column (B), box plot visual-
ization (C), histogram visualization (D).

judgment concerning the robustness of the porosity values (deliv-
ered by the evaluated segmentation pipelines) as well as concerning
the accuracy of the resulting porosities.

The segmentation data from the pre-filtering stage are visualized
in the overview comparative matrix, which shows segmentation
pipelines in columns and datasets in rows (see Figure 6A (1)). The
overview comparative matrix has three visualization modes: devia-
tion, box plot, and histogram. The deviation mode color-codes the
median deviations of each segmentation pipeline/dataset combina-
tion (to the reference porosity values) using a diverging cool/warm
perceptually-uniform color map (2). Originally proposed by More-
land [18]. Columns of the overview comparative matrix can be
expanded to fit to the lengths of the segmentation-pipeline names
or collapsed (see Figure 6B). In addition to the deviation mode, we
want to show more details on the distribution of the porosity values.
Therefore, the box-plot mode was designed to render a matrix of
box plots. For example, Figure 6C shows a box plot for the “RATS
Threshold” applied to the WetChem low dataset. A box plot shows
the statistical properties (lower and upper whisker, first and third
quartiles, median, and outliers) of the porosity values of a segmen-
tation pipeline. The reference porosity value is indicated with a
vertical red dashed line and outliers are depicted with blue circles.
Similarly, the histogram mode depicts one porosity-value histogram
per segmentation pipeline inside a matrix cell. Figure 6D shows a
histogram for the “RATS Threshold” applied to the WetChem low
dataset. In the overview comparative matrix, a cell, a column, or a
row may be selected. Figure 6B shows a selected column of the
“IsoData Threshold”. After the selection is made, the segmentation
data are forwarded to the analysis stage where they are presented in
the SPLOM and PRS (see Section 6.3).

6.3 Analysis Stage
The analysis stage is designed to provide tools and methods for
a detailed visual analysis of the segmentation-pipeline runs. Fig-
ure 7 shows the user interface for the visual analysis of segmenta-
tion data. Here, the central view is a scatter plot matrix (SPLOM)
(1), which visualizes all the input and output parameters of each
segmentation-pipeline run. Including the run time, porosity value,
deviation from the reference porosity, index of the dataset, and Dice
coefficients [9]. To assist the visual analysis, any of these parame-

105

Authorized licensed use limited to: Christoph Heinzl. Downloaded on April 30,2021 at 10:16:28 UTC from IEEE Xplore.  Restrictions apply. 



 Analysis Stage  

1 2 

3 

4 

5 

Popup Preview 

6 

Figure 7: A SPLOM with the parameters of a segmentation pipeline
(1). A parameter of choice (Deviat. from. Ref.) is color-coded (2).
The porosity frequency histogram with a selected porosity range (3).
A parameter-range slider with a selected range of the parameter Bi-
naryThr (4). The SPLOM popup preview, which compares two differ-
ent segmentation results (5) and (6).

ters can be color-coded using a perceptually-uniform color-map (2).
Furthermore, a trade-off analysis is facilitated by the SPLOM.

The reasons why a scatter plot matrix was implemented are: a
SPLOM is often used to make correlations, trends, and outliers vis-
ible in multi-dimensional data [19] and our experts are familiar with
this visual representation. When we presented the SPLOM to the
experts, they mentioned that it is difficult to interpret the data points
without seeing the underlaying segmentation data. In order to in-
crease the understanding of the segmented data and their parame-
ters, we present the segmentation result in a popup preview if the
user hovers over a data point in the SPLOM. The popup preview
shows the original data superimposed with the segmentation result.
A region of interest (ROI) widget is connected to the popup preview
and shows the corresponding dataset slice-wise. By specifying a
rectangular region in the ROI widget, cutouts in a dataset slice are
defined and displayed in the popup preview. To compare the seg-
mentation results of two data points in the SPLOM, one data point
can be fixed. When hovering over another one, the differences in
pore regions are displayed color-coded in the popup preview. Fig-
ure 7 depicts a dark blue fixed data point (5) and a light blue com-
pared data point (6). The popup preview shows a ROI of the dataset
E3 low. The yellow overlay indicates those voxels that are the same
in both segmentations, the newly added voxels are color-coded in
red, removed ones are color-coded in blue.

Domain experts consider it as important to assess the sensitivity
of the variations in input parameters when evaluating a segmenta-
tion pipeline. Therefore, the parameter-range sliders (PRS), were
implemented which operate on the histogram plots of the output
parameters (porosity/porosity deviations) and the input parameters
of the corresponding segmentation pipeline. By selecting a range
in the output-parameter histogram (3) the corresponding range of
the input-parameter histogram (4) is highlighted (yellow). Mean or
median values are chosen in the input-parameter histogram. These

 Visual Examination Stage 

Selection 1 Selection 2 Selection 3 

Figure 8: Side-by-side comparison of three selections of aggregated
segmentation masks (left: under-segmentation, middle: close to op-
timal segmentation, right: over-segmentation).

values are calculated by keeping an input parameter constant and
accumulating porosity or porosity deviation values for all combi-
nations of the remaining input parameters. The expert can select a
subset of pipeline runs by using either the SPLOM through spec-
ifying an arbitrary polygon in one of the scatter plots or the PRS
by specifying parameter ranges using two handles on each slider.
The selection made in the PRS is interactively synchronized with
the SPLOM. Multiple selections can be managed and organized us-
ing a selections view. Every selection from the list can be chosen,
and dynamically loaded at any time. When a selection is loaded,
pre-filtering, overview, and analysis views automatically restore the
state they had when the selection was made. This makes it easy
to go back to a previous point in time during the analysis work-
flow. The user can visually examine each selection’s segmentation
masks, or compare segmentation masks of multiple selections to
each other with 2D slices and 3D views (see Section 6.4).

6.4 Visual Examination Stage
Usually, our domain experts visually examine the result of a seg-
mentation algorithm by going through the volume and randomly
investigating some 2D slices with specific features. We provide the
visual examination stage to compare the segmentation results of
multiple selections using 2D slices and 3D views. If a comparison
of multiple selections is performed, the corresponding 2D slices
and 3D renderings for each selection are placed side-by-side (see
Figure 8). If the user interacts with a 2D slice view (e.g., zooming,
panning) or a 3D rendering (e.g., zooming, translation, or rotation)
of one selection, the interaction results will automatically synchro-
nize with the views of the other selections. This approach of linked
views, ensures that the ROIs for all the selection views under exam-
ination remain the same. Thus, the comparison of the segmentation
results is facilitated.

The different visual representations of the selected data in the 2D
slice view are presented in Figure 9. The raw XCT data (see Fig-
ure 9A) is shown in the 2D slice view to provide the proper context
for the visualizations of the segmentation data. Additional context
and reference are provided by overlaying the segmentation mask
of the reference method (see Figure 9B). The opacity of the refer-
ence segmentation-mask overlay can be changed by the user from
transparent to opaque. In order to convey an overview on how the
selected pipeline runs segment the pores, we show an aggregated
segmentation-masks overlay with adjustable opacity (Figure 9C).
First, for each voxel we calculate how many segmentation masks
classify this specific voxel as a pore. Then we encode the num-
ber of masks for each voxel using a perceptually-uniform, color-
blind-safe color map chosen with ColorBrewer [13]. Such a rep-
resentation shows which areas are segmented, and how many runs
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Figure 9: 2D slice view overlays: gray value data (A), reference seg-
mentation mask (B), aggregated segmentation masks (C), statistical
contours (D), and all features in combination (E).

segment these areas as pores. It is not capable of showing where
exactly the segmentation contours are located. On the other hand,
showing segmentation contours for every run in the selection might
lead to an excessively cluttered visualization, which is hard to inter-
pret even for experienced domain experts. Therefore, only contours
are shown for three representative segmentation runs (see statistical
contours in Figure 9D), i.e., the runs with minimum (blue), median
(black), and maximum (red) porosity values. This allows the do-
main experts to evaluate the potential extent of the selected runs’
segmentations. The colors for the statistical contours were selected
in such a way that they do not overlap with the colors from the refer-
ence and aggregated segmentation masks. Every visualization layer
can be toggled on/off and displayed on top of each other, allowing
the user to effectively combine the various depictions (Figure 9E).
For the visual analysis scenarios where the perception of the pore
shape is crucial but 2D does not provide enough context, a 3D view
is provided to the user. Aggregated segmentation masks can be ren-
dered in 3D using volume rendering (see Figure 8, 3D view).

7 EVALUATION AND DOMAIN FEEDBACK

The PorosityAnalyzer system was developed over a period of 16
months. During this time we closely worked together with the do-
main experts. To evaluate the tool, a questionnaire with respect to
the domain-specific tasks was compiled. The evaluation question-
naire uses a five-point Likert scale to rate the techniques and con-
cepts. The scale ranges from one (poor) to five (excellent) respec-
tively. In total, ten domain experts participated. Most of them work
with XCT data on a daily basis, have a good knowledge of fiber
reinforced polymers (FRPs), and are well acquainted with porosity
determination of FRPs. The experience of the participants in the
field of XCT ranges from 1 year up to 11 years; in the field of FRPs
from 1 year up to 13 years, and in the field of porosity determi-
nation of FRPs from 1 year up to 8 years. Figure 10 presents the
results of the evaluation questionnaire.

The questionnaire first, determined how suitable the computa-
tion module and the parameter-spaces dialog (PSD) are for setting
up the segmentation-pipelines by showing videos of the workflow.
Overall we got a good feedback from the domain specialists in this
respect. It was mentioned that the segmentation-pipeline setup by
drag and drop is convenient and the automatic loading of the rele-
vant dataset file is very comfortable. Locating the desired dataset
among many others often takes a long time in commercial software.
The domain experts noted that a selection of predefined segmenta-
tion pipelines (material dependent) would be helpful. The batch
processing of the segmentation pipelines was lauded. With the cur-
rently used software this is only possible by instantiating the pro-
gram several times, setting up the different segmentation pipelines
and processing them.

To evaluate the overview visualizations of the analysis module
the domain experts had to solve domain related tasks, like com-
paring and rating the pipelines to the reference one. Overall they
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Figure 10: Results of the questionnaire with a five-point Likert scale
ranging from one to five respectively, i.e., from poor to excellent.

performed very well, except in the case of the overview compar-
ative matrix in box-plot mode, where they could not identify the
correct pipeline. One feature that may have caused confusion was
the use of different plot scales. We then checked the concept of
the parameter-range sliders (PRS) for selecting suitable parame-
ter ranges. Concerning the SPLOM for selecting parameters and
allowing the experts a trade-off analysis, we got quite good feed-
back. Especially, the SPLOM popup preview to preserve the con-
text of the segmentation results and the ROI widget were perceived
as beneficial. We got excellent feedback on the 2D slice views for
comparing segmentation results and overlaying those slice views
with aggregated segmentation masks, reference mask, and statisti-
cal contours. The representation of aggregated segmentation masks
as 3D volume renderings was generally received well by the domain
experts, however some prefer the 2D slice views.

In addition to the questionnaire, we conducted an independent
qualitative interview with two domain experts who are familiar with
porosity determination of XCT scanned FRP specimens. In this
interview we explained and discussed the computation and analy-
sis module of the PorosityAnalyzer tool. Each module was then
tested by the domain experts themselves. They created different
segmentation pipelines in the computation module and evaluated
previously calculated segmentation results by using the different
data representation stages of the analysis module. In general, both
experts pointed out that the PorosityAnalyzer simplifies their work
significantly (e.g., by keeping track of the segmentation results) and
makes the porosity determination of FRPs more efficient, as shown
in the case studies in Section 8, or even enables analysis possibili-
ties, which are hard to achieve with the currently used commercial
software (e.g., comparing segmentation pipelines with color-coded
2D slice view overlays).

8 CASE STUDIES

In this section we present two case studies that reflect the domain-
specific requirements and present the capabilities of our tool.
First, we conduct a porosity determination of non-parametric
segmentation-pipelines and second, we focus on the influence of
edge-preserving smoothing when determining the porosity.
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8.1 Porosity Determination of Non-Parametric
Segmentation-Pipelines

Our domain experts often use a non-parametric segmentation al-
gorithm called “Otsu Threshold”, because it is fast and has no
parameters to specify. However, our experts found out that the
“Otsu Threshold” sometimes fails or provides unsatisfying results.
Therefore, we included into the PorosityAnalyzer eight other non-
parametric segmentation algorithms and compared those to the
“Otsu Threshold”. Figure 11A shows the overview compara-
tive matrix in deviation mode (see Section 6.2) for the aeronau-
tic datasets E3 low - E7 high (see Table 1). Datasets E3 low and
E4 low have a low porosity, datasets E5 high-E7 high have a much
higher porosity. All algorithms segmented the datasets E3 low and
E4 low in approximately five seconds. The overview compara-
tive matrix in deviation mode shows that the “Otsu Threshold” has
a high deviation for the low porosity datasets. This relationship
is illustrated in Figure 11B and Figure 11C. All other segmenta-
tion pipelines except “Moments Threshold” have a low deviation
from the reference. The overview comparative matrix in deviation
mode shows that the “IsoData Threshold” works for both kinds of
datasets (low and high porosity). Table 3 shows the results. From
the domain-specific perspective the “IsoData Threshold” is most
suitable for the aeronautic industry datasets E3 low - E7 high as
it delivers robust, accurate, and fast results for these dataset types
(see Task 4, Section 2). Assembling and analyzing the 45 tested
pipelines with the PorosityAnalyzer tool takes about 20 minutes
compared to the conventional method of the domain experts, which
takes about three and a half hours.

Overview Comparative Matrix 

B Dataset E3_low C Dataset E4_low  

A 

IsoData Otsu IsoData Otsu 

Figure 11: Overview comparative matrix in deviation mode (A); com-
parison of aggregated segmentation masks in 3D of “IsoData Thresh-
old” and “Otsu Threshold” for datasets E3 low (B) and E4 low (C).

Table 3: Accuracy results, i.e., deviations from the reference, for
the “Isodata Threshold” and the “Otsu Threshold” performed on the
datasets E3 low and E4 low.

Dataset Name
E3 low E4 low

“Isodata Threshold” Dev. from Ref. -0.0554 % -0.0224 %
“Otsu Threshold” Dev. from Ref. 21.03 % 66.65 %

8.2 Influence of Edge-Preserving Smoothing on Poros-
ity Determination

In order to determine the porosity of an FRP specimen, the do-
main experts apply a global threshold to the raw XCT data [29].
Typically, in their daily work, domain experts do not use smooth-
ing filters. However, the use of global methods without smoothing
has the disadvantage that noise is segmented as well. Therefore,
the domain experts wanted to know, how the pore segmentation
behaves if smoothing filters are used to eliminate noise. To show
the effect of smoothing filters, we have assembled two segmenta-
tion pipelines, which operate on the PorePhantom dataset (see Sec-
tion 4). The gray values of this 16-bit dataset lie between 0 and
65535. One pipeline uses gradient anisotropic diffusion (GAD),
an edge-preserving smoothing method, the other pipeline does not.
Both pipelines use the “Binary Threshold” (see Table 2) to segment
the pores. For a moderate smoothing of the data, we used the fol-
lowing GAD filter parameters: iterations 30, timestep 0.6874, and
conductance 1. The parameter range of the “Binary Threshold” fil-
ter was set to 20000-45000 with a step size of 1000 gray values.
This parameter range includes all the relevant gray values between
pore gray values and material gray values. Figure 12A presents
the resulting porosities of the individual segmentation runs for the
pipeline without GAD smoothing (upper points) and with GAD
smoothing (lower points). The porosities without GAD smooth-
ing rise faster with increasing the “Binary Threshold” than the
porosities with GAD smoothing. The smoothing with GAD en-
larges the flat region of the porosities in the middle. A closer look
at both porosity values, close to the reference segmentation (refer-
ence porosity is 6.123%), shows that the porosity difference is very
small (porosity without GAD is 6.122%, with it is GAD 6.0931%).
The popup preview visualizes this difference. The data point with-
out GAD was fixed and compared with the data point with GAD
(see Figure 12B, popup preview). Identical segmentation areas are
color-coded in yellow, different ones in blue. The blue difference
voxels are not included in the segmentation with GAD (compared
point). The domain experts would not classify the “lengthy” blue
region as a pore. They would classify it rather as noise. In addition,
we superimposed the segmentation masks without GAD and with
GAD (purple voxels and black median contour) with the reference
segmentation (yellow voxels) and compared them in a 2D slice view
(see Figure 13A, B, and C). The segmentation without GAD almost
matches the reference segmentation except for a very few voxels
(see Figure 13B). However, both segmentations identify the noisy
voxels as pores. The segmentation with GAD is largely identical to
the reference segmentation, but does not segment the noisy voxels
(see Figure 13C). The influence of the noise is illustrated in the 3D
views (see Figures 13D and E). We therefore conclude that the used
reference segmentation method is not optimal, as it contains noise.

To find an optimal parameter set for the GADSmooth-
ing BinaryThreshold segmentation pipeline, we sampled the input
parameter space of the GAD filter as follows: iterations 10–80, step
size 10; timestep 0.6874; conductance 0.6–2.0, step size 0.1. The

Popup preview:   
segmentation  
difference (blue) Lower points:  

with GAD smoothing 

Upper points:  
without GAD smoothing 

Compared point 
(with GAD smoothing) 
 

Fixed point 
(without GAD smoothing) 

 Zoomed data points 

Noisy voxels 

A B 

Figure 12: Comparison of the segmentation pipelines with GAD
smoothing filter and without. Resulting porosities and gray value
thresholds (A). Popup preview with voxel differences (B).
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Figure 13: Cutout of the raw XCT data (A). 2D slice (B, C) and 3D (D,
E) view comparison of the segmentation masks without GAD (noisy
voxels segmented) and with GAD smoothing (no noisy voxels seg-
mented; yellow noisy voxels in the zoom-in result from the reference).

“Binary Threshold” was set to the same threshold value as for the
reference segmentation (32011). For an initial selection of the in-
put parameters, we used the parameter-range sliders (PRS). We se-
lected the porosity bin with the highest segmentation frequency in
the output parameter histogram (porosity range 6–6.1%). The PRS
automatically marked the corresponding input parameter ranges (it-
erations 40–80; conductance 0.9–1.4 and 1.6–2) with yellow (see
Figure 14A). These ranges were selected, saved to the selections
view, and loaded to the SPLOM. The scatter plot in Figure 14B
shows the selected ranges. The aggregated segmentation masks of
these segmentation classes are illustrated in the 3D view. The com-
parison of the two classes in 3D shows that the segmentations with
conductance 0.9–1.4 contain noise, while the segmentations with
conductance 1.6–2 do not (see Figure 14B, 3D details). There-
fore, we focused on the segmentation class with conductance 1.6–
2. We divided this class into two classes, one with conductance
1.6–1.7 and one with conductance 1.9–2 (see Figure 14C, scat-
ter plot). When examining the 2D slices of the aggregated seg-
mentation masks, we found that the segmentations with conduc-
tance 1.9–2 start under-segmenting the data (see Figure 14C, ex-
emplary 2D slices). We discarded the segmentations with conduc-
tance 1.9–2 and further investigated the remaining class with con-
ductance 1.6–1.7 (see Figure 14D, scatter plot). By using the popup
preview, we were able to compare the differences of the individ-
ual segmentations. All the segmentations start to under-segment
the data except one segmentation with conductance=1.6 and itera-
tions=40 (see Figure 14D, exemplary 2D slices). This segmentation
pipeline shows a porosity value of 6.0715%. When comparing the
reference segmentation (porosity 6.123%) with the found segmen-
tation, it can be seen that the reference method over-segments the
data. For this specimen type, we propose a data preprocessing with
the GAD filter (iterations=40, timestep=0.6874, conductance=1.6),
for a precise porosity determination (see Task 3, Section 2). As-
sembling and analyzing the 120 segmentations of the GADSmooth-
ing BinaryThreshold segmentation pipeline takes about one hour
with the PorosityAnalyzer tool. With traditional methods a system-
atic evaluation of this number of segmentation masks would not be
possible within reasonable time.

A 

B 

C 

D 

Figure 14: PRS with a selected porosity and the proposed GAD filter
input parameters (A). 3D aggregated segmentation masks (B). 2D
slice comparison (C). Popup preview comparison (D).

9 SUMMARY AND CONCLUSIONS

We presented the PorosityAnalyzer, a novel tool for the detailed
evaluation and visual analysis of pore-segmentation pipelines in
fiber-reinforced polymers. The computation module was devel-
oped to conveniently set up and execute distributed off-line com-
putations. The analysis module is used for examining the resulting
data. We demonstrated how a number of visualization techniques
can be applied for the visual analysis of data on multiple levels-of-
detail. These visualizations include the overview comparative ma-
trix, the scatter plot matrix with the popup preview, the parameter-
range sliders, 2D slices with overlays, and 3D views. The tool
allows the domain experts to improve their workflow, obtain im-
portant insights into porosity segmentation-pipelines, and automate
tedious manual operations. We present two use cases, indicating
how PorosityAnalyzer can be employed to compare, analyze, and
obtain insights into segmentation pipelines applied to a range of
different datasets. We evaluated the tool with a questionnaire and a
qualitative interview to get feedback from the domain experts. The
feedback has shown that our tool makes it easier to compare es-
tablished as well as new segmentation techniques and reduces the
required time to compare various segmentation algorithms.
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Abstract—This work introduces a tool for interactive exploration and visualization using MetaTracts. MetaTracts is a novel method for

extraction and visualization of individual fiber bundles and weaving patterns from X-ray computed tomography (XCT) scans of endless

carbon fiber reinforced polymers (CFRPs). It is designed specifically to handle XCT scans of low resolutions where the individual fibers

are barely visible, which makes extraction of fiber bundles a challenging problem. The proposed workflow is used to analyze unit cells

of CFRP materials integrating a recurring weaving pattern. First, a coarse version of integral curves is used to trace sections of the

individual fiber bundles in the woven CFRP materials. We call these sections MetaTracts. In the second step, these extracted fiber

bundle sections are clustered using a two-step approach: first by orientation, then by proximity. The tool can generate volumetric

representations as well as surface models of the extracted fiber bundles to be exported for further analysis. In addition a custom

interactive tool for exploration and visual analysis of MetaTracts is designed. We evaluate the proposed workflow on a number of

real world datasets and demonstrate that MetaTracts effectively and robustly identifies and extracts fiber bundles.

Index Terms—MetaTracts, fiber bundle extraction, analysis and visualization, carbon fiber reinforced polymers, X-ray computed tomography,

interactive visual exploration and analysis

Ç

1 INTRODUCTION AND MOTIVATION

THE development of novel materials and components
which integrate function orientation and efficiency are

increasingly becoming a key objective of modern industry.
Carbon fiber reinforced polymers (CFRPs) allow a quick inte-
gration of these demands and have become the material of
choice for an ever growing number of applications. CFRPs
are rapidly replacing conventional materials such as alumi-
num and steel, e.g., CFRPs show desirable characteristics
such as high specific stiffness, high specific strength and
high corrosion resistance. Moreover, CFRP materials show
these characteristics at considerably lower weight. At the
same time, highly complex and integrated components,
which were previously impossible to manufacture, may now
be produced from CFRPs. Primary structures and highly
loaded components in aeronautics are a common example.

Typical carbon fiber reinforced polymer components,
specifically CFRP laminates with endless carbon fibers con-
sist of two main components: first a matrix, which acts as a
bonding element and second, the reinforcements, which

help in achieving the desired characteristics. Various pro-
duction processes are used to manufacture CFRP laminates.
Most of these processes start with the reinforcement ele-
ment, weaving individual carbon fiber bundles (yarn) into
sheets of carbon fiber cloth in a predefined pattern. These
sheets of woven carbon fiber cloth are also referred to as fab-
ric and form the geometrical structure associated with the
CFRP materials. Depending on the requirements of the final
component, fabrics may be stacked in multiple layers in
similar or different orientation. Both the alignment of fabrics
and the weaving pattern of the individual carbon fiber bun-
dles strongly influence the properties of the CFRP laminate.
Resins are then integrated in the material system to fill the
gaps in the fabric forming the matrix component. The main
function of the matrix is to act as a bonding between the
individual carbon fiber bundles. After curing, the produc-
tion process of the CFRP laminate is finished.

The rapid expansion in utilization of CFRPs, the com-
plexity of both the material system and the final compo-
nents has generated a strong demand towards non-
destructive testing (NDT) techniques for quality control [1].
The most widely used method for NDT is ultrasonic testing
(UT). While UT provides a quick and cost-efficient overview
of the material, it generally lacks resolution and may gener-
ate arbitrary results, e.g., due to the geometry of the compo-
nent. Industrial 3D X-ray computed tomography (XCT, also
referred to as 3DXCT or cone beam XCT) is increasingly
applied for non-destructive testing of fiber reinforced poly-
mers [2]. In contrast to UT, XCT generates a highly detailed
3D volumetric representation of the scanned specimen. In
cone beam XCT geometry, the specimen is placed on a
rotary table between X-ray source and detector. The X-rays
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passing through the specimen get attenuated by the materi-
als present. By transferring the X-rays in a scintillator layer
into visible light, the detector records the corresponding 2D
attenuation image (penetration image). The specimen is
rotated and a 2D attenuation image is recorded at each
angular step. The full series of attenuation images of a 360
degree rotation is utilized to generate a complete recon-
struction of the data volume [3]. Cone beam XCT can reach
voxel sizes below 500 nm generating high resolution volume
data for comprehensive and detailed analyzes. To aid
enhance reconstruction from scalar data such as industrial
XCT [4] gradients have also been used.

There is unfortunately a trade-off between viewport and
image resolution. The magnification reached within an XCT
scan is determined by the distances between source and
specimen as well as source and detector. The magnification
therefore directly influences both resolution and viewport:
higher resolutions decrease the viewport but show more
details, lower resolutions allow for larger viewports and
thus larger portions of the specimen.

In this work, we focus on datasets with larger viewports
but lower resolutions where the individual carbon fibers
(filaments) are indiscernible or barely visible. Our domain
experts are mainly interested in visualizing the geometric
structures in the weaving pattern of fiber bundles in endless
carbon fiber reinforced composites instead of high resolu-
tion studies of individual fibers. Fig. 2 depicts our targeted
dataset type. It shows the recurring fiber bundle pattern in
the final CFRP laminate, the unit cell. Our work is motivated
from the recent progress in two interrelated fields: first,
CFRP components have gained wide application in industry
because of its superior material and physical properties in
comparison to conventional materials [5]. Second, recent
developments in industrial 3D X-ray computed tomography
(XCT) with regard to larger detectors, larger field of views,
and better resolutions has opened XCT to this new applica-
tion area of non destructive testing for fiber reinforced
components [6]. While fiber bundles are now understood as
highly important in determining component properties, the
tools for visualizing the internal structure have not devel-
oped at the same pace. To the best of our knowledge, there
is no current work that can resolve simple queries such as:

� How to extract and visualize the geometric structure
of a particular fiber bundle?

� How to visualize the interaction between a particular
pair of fiber bundles (weaving/braiding) or a unit
cell?

� Which fiber bundles show a particular orientation?
� Which fiber bundles are of the same type of yarn?

i.e., which bundles show similar sizes or diameters,
which is the largest or smallest fiber bundle?

We separate the above queries into two major classes:
geometric structure and spatial context. Queries associated
with attributes of fiber bundles such as shape, size and ori-
entation are grouped under geometric structure; while those
referring to how two or more fiber bundles interact are cate-
gorized under spatial context. Spatial context answers ques-
tions such as: are these bundles in contact at a particular
location in the dataset? What are the relative orientations of
the contacting fiber bundles?

Providing answers to the above queries from currently
common approaches such as volume rendering of the XCT
datasets or visual inspection of particular 2D slices is non-
trivial, even for experts. In [7] the authors presented Meta-
Tracts, a novel approach which uses visualization techni-
ques to gain insight into XCT scans of CFRP data. In this
paper we elaborate and extend on this approach. Specifi-
cally, the extensions include a sub-sampling technique for
the MetaTracts to reduce computation time and a custom
interactive tool for exploration and visualization of the
MetaTracts.

We interpret and advance techniques from diffusion ten-
sor imaging as well as visual analysis to extract and visual-
ize geometric structures from 3D X-ray computed
tomography data of the woven carbon fiber reinforced com-
posites. The main goal of this work is to expand the state of
the art in non-destructive testing through extraction and
interactive visualization of composite structures in complete
unit cells of woven fabrics.

Fig. 1 shows an overview of our approach. Starting from
XCT data, we first generate MetaTracts (see Section 4). Then
we sub-sample and cluster the MetaTracts to generate fiber
bundles (see Section 5). We discuss the visualizations we cre-
ated for our domain experts (see Section 6). Section 7 illus-
trates an interactive tool we built for fiber bundle analysis.
Section 8 summarizes the user evaluation of ourmethod. Sec-
tion 9 describes our experimental results, Section 10 presents
our parameter choices. We conclude with some limitations
(Section 11), conclusions and future work (Section 12).

Fig. 1. Flow chart of the MetaTracts approach to fiber bundle extraction from XCT scans of CFRP datasets.
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2 RELATED WORK

Diffusion Magnetic Resonance Imagining (dMRI, also
referred to as Diffusion Tensor Imaging (DTI)) is a mag-
netic resonance imaging technique which provides three-
dimensional information about the structures in cerebral
white matter based on diffusion of water molecules. DTI
has gained popularity in medical diagnosis within recent
years; its main clinical application is found in the study
and treatment of neurological disorders. DTI may reveal
abnormalities in white matter fiber structure and is used
for visualizing the organization of fibers in the human
brain and brain connectivity. A variety of algorithms have
been proposed for generating fiber-tract trajectories. In
general, these reconstructions of fiber trajectories are clus-
tered into bundles which are expected to be related
anatomically or spatially. We broadly divide the related
work on DTI into two parts of immediate relevance to our
proposed solution: fiber tracking and fiber clustering. We
next review methods for analyzing the second order local
structure and the current state of the art in the visual anal-
ysis of fiber reinforced composites.

2.1 Fiber Tracking in Diffusion Tensor Imaging

A basic assumption in DTI analysis is that the principal
eigenvector of the diffusion tensor is parallel to the underly-
ing dominant fiber direction in each image voxel [8], [9],
[10]. The principal diffusion direction at each discrete loca-
tion is interpolated to form a continuous velocity field. Con-
tinuous tracts are generated by propagating virtual particles
along the principal diffusion directions until they reach
some termination criterion. This is usually done by solving
a Runge-Kutta integration (typically second or fourth
order). Because decisions are made locally, these methods
perform poorly in noisy regions and often generate small
fibers. Basser et al. [8], [11] proposed that white matter tracts
could be represented as 3D curves in space. They showed
that numerical methods could be used to follow fibers and
fiber bundles and to generate tracts in human brain data.
Mori et al. [9], [10] divided reconstruction techniques into
line-propagation or energy minimization techniques. In line
propagation approaches, trajectories are computed based
on local neighborhoods and in energy minimization
approaches the most favorable trajectory connecting two
given endpoints is selected.

2.2 Fiber Clustering in Diffusion Tensor Imaging

In DTI, similarity measures such as proximity between
fibers are used to group fiber tracts into bundles. Extensive
research has been done on automatic DTI fiber clustering
methods [12], [13], [14], [15], [16]. These approaches build
on the assumption that proximity measures that compare
DTI fiber trajectories can also represent anatomical relation-
ships. Clustering requires choosing a suitable proximity
measure and a method for grouping “close” fibers.

Pairwise proximity measures include endpoint distan-
ces [12] and mean of the closest distances between points on
two fibers [14]. Zhang et al. [16] introduced a thresholded
version of the closest distances mean, so that fibers which
are close for certain distance and then diverge, are clustered
separately. Brun et al. [13] use normalized cuts along with a
pairwise computed distance measure using 9D fiber shape
descriptors.

The choice of the clustering algorithm can be broadly
divided into those approaches using hierarchical cluster-
ing [16], [17] and those using spectral clustering [13], [18],
[19]. Brun et al. [12] described how a spectral non-linear
dimensionality reduction technique, Laplacian eigenmaps
(Belkin and Niyogi [20]), can be applied to the problem of
organizing fiber tracts data. The key notion of the Laplacian
eigenmaps algorithm is to represent the underlying data as
a graph. Each node represents a data point and the edges
connect neighboring data points. An eigenvalue problem is
solved to represent the data in a lower dimensional space
while preserving the local graph structure. In the case of
fiber bundles, the individual points are fiber tracts. In the
ideal case fiber tracts belonging to the same bundle must
remain “close” to each other in the lower dimensional
space. Westin et al. [15] also used spectral clustering on a
Hausdorff distance measure defined as the maximum of
pointwise minimum distances between two fibers. Jonasson
et al. [18] ran K-means clustering on the eigenvectors of the
affinity matrix defined as the co-occurrence of fibers in the
data. Additionally, the agglomerative hierarchical cluster-
ing method [21] has gained popularity for proximity based
fiber segregation (Zhang et al. [16], Corouge et al. [14]). An
agglomerative hierarchical clustering method starts with
each data point/fiber in an individual cluster. At each stage
of the algorithm the two most similar clusters are merged
based on some criterion. The two basic cluster similarity
measures are single-link and complete-link. With the single
link, the distance between the clusters is the distance
between the closest pair of items. Moberts et al. [17] imple-
mented several distance measures in their evaluation of
fiber clustering and concluded that clustering methods are
generally accurate in capturing fiber bundles.

There are a number of difficulties in hierarchical cluster-
ing. First, computing all pairs’ distances for tracts to gener-
ate the distance matrix is time consuming [22]. Second, a
“correct” distance measure to compare tracts must be cho-
sen. Third, hierarchical clustering is best suited for similar
length fibers. Spectral methods are also hindered by long
matrix computations.

2.3 Second Order Local Structure

Unlike DTI, we do not have diffusion tensor data. Instead,
we have a scalar volume with tubular structures embedded

Fig. 2. Data characteristics: (a) Rendering of dataset D1. (b, c) 2D slices
along Z- and X-axis. (d) Zoom in of the green regionmarked in (c). Multiple
fiber bundles cross and are indistinguishable by visual inspection alone.
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in them. Analyzing curvilinear structures in volumetric
images has been utilized for a variety of purposes including
center line extraction [23] and vascular image enhancement
as proposed by Frangi et al. [24] and Sato et al. [25]. Frangi
et al. [24] introduced a method based on studying the eigen-
values of the Hessian matrix specifically for the purposes of
developing vessel enhancement filters.

2.4 Visual Analysis and Modeling of Fiber
Reinforced Composites

The approaches presented in visualization and analysis of
composites mainly focuses on individual objects such as
fiber extraction from high resolution data where the indi-
vidual fibers are clearly discernible. Fritz et al. [26] pro-
posed interactive workflows for non destructive testing
practitioners to explore and quantify steel fibers in rein-
forced sprayed concrete. Salaberger et al. [27] introduced a
pipeline to extract and characterize individual fibers of fiber
reinforced composites. They encode the extracted fibers as
color-coded line segments in 3D and visually identify fibers
with similar orientations. Recently, Weissenb€ock et al. [28]
presented a system for interactive exploration and analysis
of fibers in fiber reinforced polymers. They use the visuali-
zation paradigms of a scatter plot matrix and parallel coor-
dinates to select fibers according to their characteristics. The
defined fiber classes can be managed in a list and are dis-
played with a 3D renderer. Lomov et al. [29] discuss the
problems and current available solutions in geometric
modeling of three dimensional composites. Modeling of the
composites first starts with establishing the topology of the
structure, which translates to answering if a particular bun-
dle is in contact with another at a particular position. The
second step builds the geometry of the model, answering
queries relating to placement of bundles in space, their ori-
entations and dimensions.

3 DATA CHARACTERISTICS AND ASSUMPTIONS

Fig. 2 shows dataset D1 with woven fiber bundles which
is used for explaining the pipeline. The size of D1 is 450 �
300 � 500 voxels with an isotropic resolution of 2 mm and 8
bit unsigned integer scalars. Fig. 2 clearly shows the recur-
ring fiber bundle weaving pattern of the composite unit cell
used for manufacturing fiber composites. Fig. 2a shows a
volume rendering of the dataset. Figs. 2b and 2c show 2D
slices along the X- and the Z-axis respectively. Fig. 2d
shows a magnified image of the green region of interest and
contains two bundles going in orthogonal directions. The
low resolution makes it impossible to separate the two fiber
bundles. Also the separation between two fiber bundles is
barely visible. The fiber bundles may differ in terms of the
amount of fibers in the bundle. Figs. 2b and 2c shows the
large variation in cross section sizes among the bundles.
Depending on the weaving pattern, the fiber bundles cross
each other in different orientations. The number of orienta-
tions is defined by the weaving pattern and typically con-
sists of two main orientations. The weaving pattern may
cause individual bundles to be curved. In consequence,
individual fibers may be adjacent in euclidean distance but
belong to different bundles. We make the following assump-
tions on our data:

� The structure embedded in the data contains fiber
bundles of indiscernible fibers.

� Local orientation: Each point in a fiber bundle has a
local orientation parallel to the corresponding area
in the fiber bundle.

� Local orientation may gradually change within the
fiber bundle.

� Local orientation may be noisy and not reliable.
� Connectivity: When moving along the direction of a

non-noisy local orientation in small increments, we
reach another neighborhood with similar local
orientation.

� Fiber bundles going in different directions only
interact near the surface of contact.

4 EXTRACTING METATRACTS

Extracting MetaTracts consists of two main steps. Initially, a
local orientation direction (represented as a unit vector) is
computed at each grid location. Next, we compute a coarse
set of poly-cylinders called MetaTracts which traverse the
data constrained by the local orientation directions. Section
4.1 describes the procedure to generate reliable Hessians.
Section 4.2 describes the MetaTracts and their properties.
Section 4.3 details the creation of MetaTracts.

4.1 Computing Reliable Hessians

The objective of this step is to associate each grid location
with a unit vector which represents the orientation in the
local neighborhood and a real value [0,1] that represents a
measure of reliability of the orientation computed at the
given location. A reliability score of 0 means the local orien-
tation is not credible while a score of 1 means the local ori-
entation is correct. The input to this stage is the original
scalar data, which is an uniform lattice grid in R3. We
approximate the local orientation by eigenvalue analysis of
the Hessian matrix applied locally to each voxel.

Analyzing curvilinear structures in volumetric images
has been utilized for a variety of purposes including center
line extraction [23] and vascular image enhancement [24],
[25]. These approaches search for geometrical constructs
that can be regarded as tubular structure. The local region
around a pixel in an image is often approximated by the
Taylor series expansion F ðx0 þ @x0Þ ¼ F ðx0Þ þ @xT

0 50 þ
@xT

0H0@x0, where 50 and H0 are the gradient and the Hes-
sian matrix computed at x0. The Hessian matrix captures
the local second-order structures inherent in the intensity
(scalar values at grid vertex) variations around each grid
location. Analyzing the second order information (Hessian)
has an intuitive justification in the context of detecting tubu-
lar structures [24], [25]. The second derivative of a Gaussian
kernel acts like a probe that measures the contrast between
the regions inside and outside in the direction of the deriva-
tive. The eigendecomposition of the Hessian matrix gener-
ates eigenvectors which represent the local curvature of the
image. The eigenvector corresponding to the smallest eigen-
value gives the direction along which the curvature is small-
est. This direction also termed as the principal direction,
coincides with the direction of the tubular structure.

Frangi et al. [24] introduced a process that searches for
geometric structures which are tubular. They defined a
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“vesselness” criterion based on the geometric ratios of
eigenvalues of the second order ellipsoid given by the local
Hessian matrix. In order to determine reliable Hessians, we
compute the same metric. We include their work here for
completeness and direct the reader to [24] for details. Let �K

be the eigenvalue with the Kth smallest magnitude. Here,
j�1j � j�2j � j�3j are the eigenvalues of the Hessian matrix.
Specifically, a pixel belonging to a vessel region will have
small �1 (j�1j � 0) and �2, �3 of large magnitude and of
equal sign (j�1j � j�2j and j�2j � j�3j). The sign indicates if
the vessel is bright in a dark background or dark in a bright
background. In our case the individual fibers are bright
(�2; �3 < 0). The following measures are defined in [24].

RA ¼
Largest Cross Section

�
p

Largest Axis Semi-length2
¼ j�2j
j�3j (1)

RB ¼
Volume

�ð4p�3Þ
ðLargest Cross Section Area

�
pÞ32
¼ j�1jffiffiffiffiffiffiffiffiffiffiffiffij�2�3j

p : (2)

In Equation (2), RB provides a measure of deviation from a
“blob” like structure while in Equation (1), RA distinguishes
between “plate-like” and “line-like” structure. Grayscale
variations and close proximity of the fibers in our data
make the Hessians computed at each voxels susceptible to
errors. Thus, we compute reliable Hessians (RH) to deter-
mine which locations in the volume provide reliable local
orientation.

RH ¼
0 if �2 > 0 or �3 > 0

ð1� e
�RA

2

2a2 Þðe
�RB

2

2b2 Þð1� e
�s2
2c2 Þ otherwise:

(

Variable s is the Frobenius norm of the Hessian matrix.

The value of ð1� e
�s2
2c2 Þ will be low in regions with no struc-

ture. The utility of the vesselness is a little different in our
framework than in the work of Frangi et al. [24]. First, ves-
selness in biology is computed for different scales because
the vessels can be of different sizes. In our case, usually the
widths of individual fibers are known a priori. Second, we
do not have clear tubular structures embedded in a dark
contrast matrix such as in blood vessels. Instead, we are try-
ing to associate each grid location with a probable orienta-
tion based on its local second order structure. The RH is
interpreted as a reliability measure of the local orientation.

Grid locations where the RH is above a cutoff threshold are
marked as regions with reliable orientations (see Section 10).

Fig. 3 shows the intermediate results of the local orienta-
tion computation. The principal direction represented as a
unit vector has been mapped to the RGB color space.
Fig. 3a shows the entire dataset. Figs. 3b and 3c provide
2D slices along the Z- and X-axes respectively. Regions
with X- and Z-axis local orientation show predominant red
and blue color respectively. Fig. 3d shows a magnified
region of interest. The black regions within bundles are
regions where the RH is less than the threshold and have
unreliable local orientation. The bundles are also not uni-
formly colored as the Hessians and the corresponding
principal directions are noisy.

We indicate some intrinsic differences between DTI and
our XCT data. Fiber traces can be generated in DTI using a
standard fiber tracking algorithms following the principal
direction of diffusion by employing a fourth order Runge-
Kutta method [12]. The principal direction based on the
Hessian matrix works best when the tubular structures in
the data are well separated from the background. This is not
the case for our data. The local orientations at each voxel are
inherently noisier.

4.2 MetaTracts Properties

Conventional integral curve based techniques cannot be
directly used to extract fiber bundle traces from reliable
Hessians because of the spurious nature of the Hessian
based local orientations. Thus instead of building fiber
traces, we define an abstract representation of the fibers. We
start from two key assumptions on the data, specifically
“local orientation” and “connectivity”, while taking into
account the adverse effects of noise and low resolution.

This is achieved by interpreting the underlying geomet-
ric structure of the fibers as a set of connected cylinders.
Hence, we formulate MetaTracts as a coarse and simple
approximation of integral curves in the form of a continu-
ous chain of cylindrical tubes in R3. MetaTracts traverse the
fiber bundles embedded in the original data. Extending the
intuition developed above, we devise the following proper-
ties that the MetaTracts share;

1) MetaTracts are associated with a continuous set of
cylinders.

2) MetaTracts are associated with a start point at a grid
vertex (Cp).

3) Individual cylinders in MetaTracts have constant
lengths, radii, and start points (which are also grid’s
vertices).

4) Individual cylinders in MetaTracts (except the first
one) are connected to their previous cylinders at
their start point.

5) Individual cylinders are parallel to the local orienta-
tion vector at their start points (NP ).

4.3 MetaTracts Generation

In this section we detail the process of generating Meta-
Tracts. Here we explain the process in R2, the procedure

extends to R3 trivially. The output of the last (reliable Hes-

sian) stage is input to the current step. In R2, each grid loca-
tion is associated with a unit vector (representing the local

Fig. 3. Reliable Hessians. (a) MetaTracts colored according to the mean
local orientation vector mapped to the RGB color scale. (b,c) 2D slices
along Z- and X- axis. (d) Magnified region marked in (c).
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orientation) and a reliability measure RH[0,1]. Fig. 4 shows
some key features of MetaTracts. In Figs. 4a and 4b the

regions with unreliable Hessians are marked in blue. In R2

the individual components of MetaTracts are rectangles.
Fig. 4c shows an individual rectangle. Let the seed point
associated with this cylinder be grid point Cp (property 2 in
Section 4.2). The local orientation at Cp as computed in the
reliable Hessian stage is NP and is given by the dark green
arrow. The rectangle itself is of length L and radius R (prop-
erties 3 and 5 in Section 4.2).

Candidate vertices: We start with an individual rectangle
(Fig. 4b) with seed point Cp, local orientation NP and
dimensions L, R. The set of grid vertices which are located
within the rectangle (green region) in Figs. 4a and 4b are
possible start points for the next cylinder. Among these we
first discard the grid points which have unreliable Hessians
(marked in blue). The remaining set of grid points are called
“candidate vertices” and are potential start points for the
next rectangle. Next, based on the “local orientation” and
“connectivity” assumptions on our data, we rank all the
candidate vertices. The rank of each candidate vertex is
based on the following characteristics.

� Orientation similarity: The local orientation (Np) of the
start points (Cp) for the consecutive cylinders should
be similar.

� Large distance: The MetaTracts should traverse the
data using as few cylinders as possible. The distance
between start point (Cp) of one cylinder and the start
point for the next cylinder should be as large as pos-
sible. We measure the distance of each candidate
vertex from Cp by projecting the euclidean distance
between them onto Np. For example, in Fig. 4b the
distance is measured as the euclidean distance
between the green and the orange vertices projected
on to Np. We refer to this perpendicular projection
distance as ‘projected_dist’.

We next define a “priority” for each candidate vertex,
based on the above characteristics. For each cylinder in a
MetaTract, we put it’s “candidate vertices” in a priority
queue based on Equation (3).

Priority ¼ g1e
ð�angle2=h2Þ þ g2e

ð�projected dist2=t2Þ (3)

g1, g2 are the weights (R�0) which decide how the “priority”
depends on the affine combination of the two factors. For all
our cases, we use g1 = 1=3 and g2 = 2=3. In general, we sug-
gest g1 þ g2 ¼ 1 and g1 � g2. At each iteration, we pick the
top element in the priority queue to generate the

corresponding cylinder, and repeat the steps. Essentially,
Equation (3) selects a grid point which is farthest from the
current start point and is going in a similar direction. This
approach tackles noise/errors in local orientation better
than integral curves by looking at multiple choices for ver-
tex candidates and avoiding intra-cell interpolation in an
already noisy environment.

In Fig. 4b the orange grid vertex is selected next and the
process repeated. The purple vertex is in a region of unreli-
able Hessian and is not selected even though it is further
away from the seed point in terms of euclidean distance. If
we generate MetaTracts that have erroneous local orienta-
tions, the size of the candidate vertex set will be small. This
will create MetaTracts of small length which are then
removed.

The MetaTracts generated by the above procedure are
shown in Fig. 5. The MetaTracts are colored with the mean
orientation direction mapped to the RGB space. Fig. 5 also
shows a single slice of the YZ- and XY-plane. Consistent ori-
entation is a key intrinsic feature in our data which is not
obvious from the original grayscale images, but becomes
visually pronounced in the generated MetaTracts.

Fig. 16 shows the MetaTracts of a particular bundle col-
ored according to their individual length. MetaTracts in a
given fiber bundle may extend the full length of the bundle
or have different lengths and partial overlaps.

5 FIBER BUNDLE GENERATION

The MetaTracts generated in the previous section represents
fragments of the fiber bundles. The MetaTracts are then
clustered in order to extract the complete fiber bundles. The
clustering process benefits from both the orientation and
geometric proximity information inherent in the XCT scans
of the CFRP fiber bundles.

Empirically, we found “orientation” information was
more reliable than “geometric” proximity based approaches
for MetaTracts data. For example, Fig. 5 (where the Meta-
Tracts are color-coded according to mean orientation)
clearly shows a separation of MetaTracts based on
“orientation” of the MetaTracts. Conversely, we noticed
that partially overlapping fibers (Fig. 16) created problems
for “geometric” proximity based approaches. We also
observed that different clustering techniques performed
preferably for different measures.

We focused on the following objectives. First, we wanted
a clustering approach which would take into account
“orientation” and “proximity”. Second, we stressed on a
simple and robust approach which could be applied gener-
ally to a variety of datasets (constrained upon satisfying our
data characteristic assumptions). A final goal was to assure
parameters for the approach to be dependent on physical

Fig. 4. MetaTracts generation. (b) MetaTracts generation process. (a)
Magnified region in (b). (c) Individual MetaTract cylinder. [7].

Fig. 5. MetaTracts color-coded according to their mean orientations,
along with slices of the YZ- and XY-plane.
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parameters which our end users such as material scientist
could easily grasp and manipulate. Accordingly, instead of
creating a heuristic and artificially combining the orienta-
tion and geometric proximity measures, we separated the
clustering process. Specifically, we first cluster based on
“orientation”. Each orientation cluster is then further subdi-
vided based on “geometric” proximity. The two-step clus-
tering process, helps making the problem more tractable
and the parameters more intuitive to the end users. Section
5.3 describes associated problems with our experiments
with a single-step clustering approach.

Section 5.1 describes orientation based clustering. Section
5.2 describes proximity based clustering. Section 5.3
describes our experiments with one-step clustering. Further
discussion about the parameters involved can be found in
Section 10.

5.1 Orientation Based Clustering

Before extracting individual fiber bundles, we first separate
the MetaTracts into classes based on their major local orienta-
tions. To cluster MetaTracts going along similar local direc-
tions, we use a spectral embedding technique called
Laplacian eigenmaps (originally introduced by Belkin and
Niyogi [20]). An eigenvalue problem is solved to map the
manifold embedded in a graph into a lower dimensional
space, while preserving the graph structure. Let G be the
graph, we compute the eigenvalues and eigenvectors for the
generalized eigenvector problem Lff ¼ �Dff , where D is
the diagonal weight matrix andL is the Laplacianmatrix. The
eigenvector f0 corresponding to the eigenvalue 0 is left out
and the nextm, f1 through fm eigenvectors are used to embed
in anm-dimensional space (see Section 10 for values ofm).

In our problem, each MetaTract is a node in the graph.
We adopt a simple orientation based measure to define the

weight of the edges of the graph. Given a pair of Meta-
Tracts, the edge weight between two nodes is defined as the
cosine of the maximum angle between the local orientations
(NP ) of all pairs of start points (CP ) between the two Meta-
Tracts. The edge weights give a “distance matrix” represent-
ing the distance between each pair of nodes. Using the
Belkin and Niyogi algorithm we “embed” these nodes in a
low dimensional space where the euclidean distance
between nodes, approximates the distance between nodes
given by the original “distance matrix”. Next, K-means clus-
tering is employed in the lower dimensional space, whereK
is the number of major fiber bundle directions in the woven
structure. K is derived from domain knowledge. For all our
test cases, there are two major fiber bundle directions.
Dimensionality reduction provides us some interesting
advantages, by automatically handling the case of curved
bundles. Laplacian eigenmaps have been used before for
DTI clustering [12]. Fig. 6b shows the result of the K-means
clustering with the nodes (MetaTracts) projected to the top
three eigenvectors as the major axes. As expected there is a
clear distinction based on fiber bundle orientation. Figs. 6a
and 6c shows the MetaTracts colored according to orienta-
tion clustering results, in blue and red respectively. Each
distinct cluster represents MetaTracts belonging to all fiber
bundles, along an individual orientation. Note the similarity
between Figs. 6a and 6c and the result of coloring the Meta-
Tracts by mean orientation (Fig. 5).

5.2 Distance Based Clustering

To subdivide the oriented clusters into individual fiber bun-
dles, we include further information about the geometric
proximity between MetaTracts. We use the directed Haus-
dorff distance for distance based clustering. EachMetaTract is
represented as a set of points (CP ). Formally, the directed
Hausdorff distance from point set P to point set Q is defined
asHdirðP;QÞ ¼ maxp2Pminq2Qdðp; qÞ. TheHausdorff distance
is defined as HðP;QÞ ¼ maxðHdirðP;QÞ;HdirðQ;P ÞÞ. The
Hausdorff distance is a metric so HðP;QÞ � HðP;Q0Þ þ
HðQ0; QÞ but the directedHausdorff is not. Unfortunately, the
Hausdorff distance does not work well for our application. A
single fiber bundle is represented as a set of “overlapping”
MetaTracts. For example Fig. 16 shows the length distribution
of MetaTracts which express the fiber bundle. Consequently,
if aMetaTract P covers only a part of the fiber bundle covered
by Q, thenHdirðP;QÞ will be very small whileHdirðQ;P Þ will
be large. Thus, HðP;QÞ will be large, even though P and Q
are in the same fiber bundle. Instead of using the Hausdorff
distance, maxðHdirðP;QÞ;HdirðQ;P Þ, we use minðHdirðP;QÞ;
HdirðQ;P ÞÞ. IfP covers only a part of the fiber bundle covered
byQ, thenminðHdirðP;QÞ;HdirðQ;P ÞÞ is very small. Note that
if P andQ overlap but do not cover the same parts of the fiber
bundle, then HdirðP;QÞ and HdirðQ;P Þ and minðHdirðP;QÞ;
HdirðQ;P ÞÞ will be large. The directed Hausdorff distance is
very sensitive to outliers in the data. However, becauseMeta-
Tracts after orientation clustering are constructed using cylin-
ders with similar orientations, they are not plagued by
outliers. To cluster based on MetaTract proximity, we used
single linkage hierarchical clustering. Hierarchical clustering
has a single parameter h, the desired number of clusters. Clus-
ters aremergeduntil there are onlyh clusters left. Hierarchical
clustering is intuitive since it is easy to trace how clusters are

Fig. 6. Clustering results: Orientation clustering (a,b,c), distance cluster-
ing (d,e). (b) Results of K-means clustering (K ¼ 2) with MetaTracts
(nodes) projected to the top three eigenvectors as major axes. (a) Meta-
Tracts belonging to orientation cluster 1 in blue. (c) MetaTracts belong-
ing to orientation cluster 2 in red, MetaTracts in gray (a,c) show context.
(d,e) Hierarchical (distance based) clustering on each orientation cluster.
(f) Combined result showing 11 individual extracted clusters. [7].
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formed and merged. Single linkage clustering finds pairs of
objects p 2 P and q 2 Q where P 6¼ Q which are closer than
other such pairs, andmerges the containing clusters P andQ.
We found that single linkage hierarchical clustering had two
major drawbacks;

� The clustering might produce some “small” clusters
of just a fewMetaTracts. These MetaTracts are anom-
alies caused by overlapping fibers and did not repre-
sent true fiber bundles.

� Second, if two distinct fiber bundles “ran” parallel
for some of their length and then separated, they
would sometimes be clustered into a single errone-
ous bundle. This occurs when a short MetaTract
which was parallel to both but did not extend into
the separation region forms a link between the two
fiber bundles. This causes the fiber bundles to be
clustered into a single bundle.

To address the problem of small clusters, we applied
hierarchical clustering and then identified small clusters
with few MetaTracts. We removed the MetaTracts that
were in those clusters from the dataset and reapplied
hierarchical clustering. To address the problem of short
MetaTracts joining different fiber bundles, we applied
hierarchical clustering and then removed the shortest
tracts (length less than h times the median length, set to
0.6) in each bundle. We then reapplied hierarchical clus-
tering. We repeated both steps until a steady state of
clusters was reached and no new small fibers can be
removed. The result of hierarchically clustering all
the MetaTracts in each orientation cluster (Figs. 6a
and 6c) are shown in Figs. 6d and 6e respectively.

After the clustering step, the MetaTracts are separated
into well formed fiber bundles. The final result of the clus-
tering process is shown in Fig. 6f. Eleven individual fiber
bundles have been separated. Five fiber bundles were
extracted from orientation cluster 1 (Z-axis) and six from
orientation cluster 2 (X-axis).

5.3 Choice of Clustering Techniques

Before settling on the two-step clustering approach, we
experimented with using proximity alone in a single step
clustering approach for MetaTracts. We performed two sep-
arate tests. First, we used hierarchical clustering to cluster
the MetaTracts. Second, we used K-means to cluster the
MetaTracts. Fig. 7 shows the results.

Fig. 7a shows the results of MetaTracts that are hierar-
chically clustered directly using proximity alone into 10,
15, and finally 20 clusters. As discussed in Section 5.2,
single linkage hierarchical clustering in the presence of
overlapping MetaTracts tends to create large erroneous
clusters and small (low-cardinality) outliers. When num-
ber of clusters (parameter h in hierarchical clustering) is
10, two large incorrect clusters are generated and the
rest are outliers. As h increases, some appropriate bun-
dles start to form. But even at h ¼ 20, fiber bundles
incorrectly cluster together. For comparison Fig. 6f shows
the two-step clustering result. While hierarchical cluster-
ing is popular in clustering DTT fiber traces
(sec. Section 2.2). As shown in Section 5.2 and here, hier-
archical clustering using single linkage clustering has

problems separating overlapping fiber traces and is not
suitable as a single step clustering approach.

Fig. 7b shows the MetaTracts, clustered using K-
means clustering by proximity alone, after being embed-
ded in a m-dimensional (lower) space. We vary K from
10-20. After the dimensionality reduction, the lower
dimensional space does not preserve the spatial context
well. As a consequence MetaTracts which are in reality
far away are grouped together. Even when k is set to
twenty, very few correct fiber bundles are identified. In
comparison, the two-step approach described above is
simple, robust and extracts fiber bundles correctly. While
dimensionality reduction followed by K-means based
approaches have gained traction. Without explicit prox-
imity as computed during hierarchical clustering, such
close fiber bundles cannot be well separated by these
approaches alone.

5.4 Sampling MetaTracts

To ensure that the MetaTracts capture the features of all
the fiber bundles correctly we uniformly seed the entire
volume, which generates a considerably large number of
MetaTracts. Orientation clustering which performs eigen-
value and eigenvector computations on large distance
matrices is particularly resource consuming. For example
if M (30,000) MetaTracts are generated then the distance
matrix is a M �M (30,000 � 30,000) matrix. Whereas if
we subsample the MetaTracts and choose n (n < < M),
then the distance matrix and further operations on the
distance matrix (clustering) becomes more time and
memory efficient.

To ensure that we can handle large datasets and at the
same time preserve all features, we start by uniformly seed-
ing the entire volume and generating (M) MetaTracts. We
then subsample the MetaTracts and compute all pair distan-
ces on the sub-sampled (n; n < < M) MetaTracts and per-
form clustering and fiber bundle extraction on the sub-
sampled MetaTracts.

The sampling algorithm is given in Algorithm 1. The
sampling algorithm keeps track of a current set of

Fig. 7. Applying only (a) hierarchical clustering and (b) dimensionality
reduction followed by K-means clustering, methods for various numbers
of clusters (distance measure is minimal directed Hausdorffs). For com-
parison the results using two-step clustering is in Fig. 6f.
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MetaTracts and in each iteration adds the MetaTract farthest
from the current set.

The distance between two MetaTracts is computed as the
maximum of the minimum distances between the start
points of the cylinders which generate the individual Meta-
Tracts. Computing all pairwise distances between two
MetaTracts is an expensive operation. We bound the distan-
ces between a single MetaTract to other MetaTracts by
maintaining a closest set and computing distances only
when necessary. Note that in step 16 of the algorithm, we
compute the distance from MetraTract M to the newly
selected MetaTract Mi only if MetaTract Mi is within dis-
tance 2�M:dist of M:closest. The idea is that if the distance
from M:closest to Mi is more than 2�M:dist, then
M:closest is closer to M than Mi so there is no reason to
compute dðM;MiÞ.

With the sampling step the user can decide the “res-
olution” of MetaTracts by setting the parameter n based on

their requirements and computational constraints (see Sec-
tion 10). In the following example, we show the influence of
the sampling step based on dataset 2 (D2) visually and pro-
vide a time comparison between sub-sampling and without
sub-sampling the dataset. The dimensions of dataset D2 are
440 � 298 � 150 with isotropic resolution of 2.75 mm and 8
bit unsigned integer scalars. Dataset D2 has 4 thin fiber bun-
dles along the X-axis and 5 slightly thicker fiber bundles
along the Z-axis. This dataset is especially challenging and
is characterized by a hole/pore in the bottom center which
was trapped during the manufacturing process. Fig. 8a
illustrates a volume rendering and a 2D slice along the Z-
axis of dataset D2.

Algorithm 1. Algorithm to subsample MetaTracts

1 S  set of all MetaTracts;
2 n number of desired MetaTracts;
3 Pick randomMetaTractM1 2 S;
4 S  S � fM1g;
/* Initialization: distances and closest bundle. */

5 foreachMetaTractM 2 S do
6 M:dist distance toM1;
7 M:closest 1;
8 end
9 for i 2 to n do
10 Pick the MetaTractM	 2 S with largestM	:dist;
11 Mi  M	;
12 Compute the distance fromMi to everyMj, j < i;
13 S  S � fMig;
14 foreachMetaTractM 2 S do
15 j M:closest;
16 if (dðMj;MiÞ < 2�M:dist) then
17 Compute distðM;MiÞ;
18 if ðdistðM;MiÞ < M:distÞ then
19 M:dist distðM;MiÞ;
20 M:closest i;
21 end
22 end
23 end
24 end

For dataset D2 we initially computed a set of 19155
MetaTracts and two sub-sampled sets of 5,000 and 2,000
MetaTracts respectively. Figs. 8b, 8c and 8d show the
clustering results. Without sub-sampling the MetaTracts
produces a higher density of MetaTracts within the fiber
bundles in contrast to sub-sampling (compare the 2D sli-
ces in Figs. 8b, 8c and 8d). At a sampling of 5,000 (26
percent of original number of) MetaTracts all fiber bun-
dles are well separated, with results comparable to Meta-
Tracts without sampling. Even at a severe sampling to
just 2,000 (10 percent of original number of) MetaTracts
the thinest fiber bundles (position 1,2 in Fig. 8d) shows
loss of reconstruction, the rest of the bundles are still
well separated. Note that the MetaTracts algorithm in all
cases is able to cope with pores inside the dataset. Table 1
shows the time comparison between sub-sampling and
without sub-sampling. Distance computation for the
19,155 MetaTracts took 72 minutes and the clustering of
the 19,155 MetaTracts took 900 minutes on an Intel Xeon
E5-2667 at 2.9 GHz with 256 GB RAM. Sub-sampling to

Fig. 8. Sub-sampling comparison based on dataset D2 a. b With sub-
sampling to 5,000 MetaTracts, c without sub-sampling and d with sub-
sampling to 2000 MetaTracts. In position 1 and 2, areas of the fiber bun-
dles have been lost due to strong sub-sampling.
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5,000 MetaTracts reduced the distance computation to 4
minutes and the clustering to just 19 minutes. The sub
sampling itself took 31 minutes. Sub-sampling to 2,000
MetaTracts reduces the distance computation to 1 minute
and the clustering to 3 minutes only.

6 VISUALIZATION OF METATRACTS

The output of the clustering step, can be used to visualize
the geometric structure of the fiber bundles and answer the
general queries itemized in Section 1. Apart from the direct
MetaTracts visualization, we added three additional exten-
sions which were deemed by the domain specialists as
highly important and useful. Specifically,

� The first extension is to voxelize the original volume
according to the clusters each voxel is associated
with.

� The second extension is to extract surfaces (triangle
meshes) associated with each fiber bundle.

� Finally, we added an interactive tool which allows a
complete visual analysis of the fiber bundles.

6.1 Voxelization and Surface Extraction

To voxelize the entire volume based on the clustering
results of the MetaTracts, we take the following “voting”
approach. We compute a neighborhood around each
voxel. We then create a histogram by enumerating the
number of voxels of each class (cluster) in this neighbor-
hood. The voxel is then assigned to the class with the
maximum number of elements in the neighborhood. Sur-
face extraction is often a crucial requirement for post
processing of the data. While Marching Cubes [30]
remains the most popular technique, other methods spe-
cific to ICT data such as MergeSharp [31] which focuses
on extracting sharp edges and corners are also used. We
extract the corresponding surfaces from voxel data by
binarizing the volume per cluster and extracting the iso-
surface associated with the largest connected component
in the input binary volume.

Figs. 9a and 14d show the result of voxelization. Fig. 9b
shows a single slice of the volume along the XY-plane.
Fig. 9c and 9d shows examples of extracted meshes.

7 INTERACTIVE VISUAL ANALYSIS OF FIBER
BUNDLES

In order to interactively analyze and explore the individual
fiber bundles, we have applied the FiberScout visualization
concept introduced by Weissenb€ock et al. [28] to the Meta-
Tracts. Fig. 10 shows the necessary steps to realize the inter-
active fiber bundle analysis tool.

During the voxelization process (Section 6.1) a unique
identification is assigned to each fiber bundle. Based on
these labeled voxel data, we use ITK [32] filters to calculate
multiple interesting fiber bundle characteristics. With this
additional information, the individual bundles are
described in much more detail. According to the work
of [28] we used the following characteristics to describe the
fiber bundles: the main diagonal elements of the orientation
tensors (a11, a22, a33), spherical coordinates of the orienta-
tions (’, u), Cartesian coordinates of the centers (Xi, Yi, Zi)
and the volume. Furthermore, we calculate the X, Y, Z
bounding box dimensions and the major axis length of a
fiber bundle. By combining the image data and the fiber
bundle characteristics we were able to create an interactive
tool which allows to select, classify and color-code the indi-
vidual bundles based on the calculated characteristics.

The graphical user interface of the interactive tool is
shown in Fig. 11. A linked scatter plot matrix (d) and paral-
lel coordinates (c) are used to assess the relationships
between the different fiber bundle features. The parallel
coordinates (PC) allow a preliminary selection of the fiber
bundle characteristics. The scatter plot matrix (SPM) on the

TABLE 1
Computation Time in Minutes with Sub-Sampling and
Without Sub-Sampling Performed on an Intel Xeon

E5-2667 at 2.9 GHz with 256 GB RAM

With
Sub-sampling

With
Sub-sampling

Without
Sub-sampling

Total Number
of MetaTracts

5,000 2,000 19,155

MetaTracts
Generation

41 mins 50 mins 41 mins

Sub-sampling 31 mins 21mins –
Distance
Computation

4 mins 1 min 72 mins

Cluster
Computation

19 mins 3 mins 900 mins

Sub-sampling took 31 mins for Dataset D2. It reduced the number of
MetaTracts from 19,155 to 5,000. Cluster computation of the 5,000 Meta-
Tracts takes 19 minutes against 900 minutes when not using sub-
sampling.

Fig. 9. Voxelization and surface extraction. (a) Voxelization of dataset 1,
the inset shows the MetaTracts after clustering. (b) A single slice along
the XY-Plane (c) Two of the extracted meshes together (d) The meshes
rendered separately.

Fig. 10. Flow chart of the interactive fiber bundle analysis tool.
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other hand, allows a refined selection. Based on the selected
characteristics the corresponding fiber bundles are visual-
ized. By selecting the appropriate data points on the rele-
vant axes of the fiber bundle characteristics in the PC or
SPM, domain-specific queries like:

� which fiber bundle shows the largest XYZ-extents,
� which fiber bundle shows the largest volume or
� which fiber bundle is parallel to the Z-axis and is the

thinnest
are answered. From the fiber bundle selections, classes

with user-defined colors can be created. The defined classes
are managed in a list (b). In addition, statistical informations
(min, mean, max) on the characteristics of a class are given.
When performing a selection in the SPM or the PC as well
as browsing through the classes or the sub elements of a
class in the list, the fiber bundles are immediately visualized
in the 3D renderer (a). All the defined color-coded classes
can be shown simultaneously in the 3D renderer. By
“Brushing and linking” the selections and managing the
classes in a list, the dataset is systematically explored and
analyzed. Thus, the domain experts are able to identify and
depict interesting regions in the specimen.

Fig. 11 shows two fiber bundle classes (blue and orange)
which are stored in the class list (b). The classifications are
based on the characteristic theta (orientation to the Z-axis in
degrees). The fiber bundles in the blue class are orientated
around 90 degree to the Z-axis, the fiber bundles in the
orange class are oriented around 0 degree to the Z-axis. The
red selection presented in the scatter plot matrix (d), parallel
coordinates (c) and the 3D renderer (a) defines two fiber
bundles of the blue class. The selection is based on the fiber
bundle volume. The bent fiber bundle at the top has a five
times smaller volume than the straight bundle behind.

In addition, the interactive analysis tool makes it possible
to quickly show the fiber bundle orientations and their
major axis lengths as color-coded volume renderings. Infor-
mations on the fiber bundle orientations and lengths are
important for the domain experts as they provide an indica-
tion of the mechanical loading capacity of the material [28].
Therefore, the angles ’ (orientation in the XY-plane) and u

(orientation to the Z-axis) of the individual fiber bundles are

mapped to a spherical color map where the X-, Y- and
Z-orientations are color-coded in red, green, and blue.
Fig. 12a shows the volume rendering of dataset D1 with the
applied spherical color map. Fig. 12b shows the fiber bun-
dles of D1 color-coded to the major axis length.

8 USER EVALUATION

We conducted a user evaluation to test the utility of
our technique. Four NDT practitioners working with XCT,
four material scientists experienced in analyzing CFRPs and
four visualization practitioners participated in the user eval-
uation of MetaTracts. We set up a questionnaire, with ques-
tions on solving given tasks. The queries used Likert Scale
(LS) for evaluating the performance of MetaTracts over cur-
rently utilized techniques. LS consists of five levels which
range from “strongly agree” to “strongly disagree”. Fig. 13
shows the results. The results are presented in the same
sequential order that they appeared to the participant. The
first set of tasks dealt with the effectiveness of MetaTracts in
comprehending “geometric structure”.

First we showed the participants a video of full 360
degree rotation of the volume rendering of D1 along the Z-
axis. We tasked the user to identify the number of separate
fiber bundles. The results show that the participants found
it difficult to determine the number of fiber bundles from
the volume rendering itself. For the second task we mapped
the “top” eigenvector of the Hessian matrix to the RGB color
map. We again showed a video of full 360 degree rotation of
the color-mapped and asked the same query. The Hessian
based mapping is a popularly used technique in fiber bun-
dle visualization which provides more information about
the major orientations than the grayscale original volume.
The results show that the evaluators performed better than

Fig. 11. The interactive graphical user interface for a detailed analysis of
fiber bundles generated with a MetaTracts approach. (a) Shows the 3D
renderer with a blue colored fiber bundle class having two red bundles
selected. (b) Shows the list of all defined fiber bundle classes with statis-
tical informations. (c) Shows the parallel coordinates and (d) The scatter
plot matrix with the different fiber bundle characteristics.

Fig. 12. (a) The spherical color map color-codes the individual fiber bun-
dles of dataset D1 according to their X-, Y- and Z orientations. (b) Color-
coded major axis lengths of the individual D1 fiber bundles.
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the simple volume rendering test (task 1). The majority of
our participants agreed or strongly agreed that the Hessian
color map was more effective. Finally, we showed the video
of the fiber bundles extracted with MetaTracts. All partici-
pants could correctly identify the number of fiber bundles
and agreed that the MetaTracts is an effective tool for per-
ceiving geometric structure of fiber bundles, than simple
volume rending or the Hessian color map. They especially
liked the 2D slices of the MetaTracts (Fig. 9b, compared to
Fig. 2c).

The second set of tasks dealt with the effectiveness of
MetaTracts in comprehending “spatial context”. The partici-
pants were given a series of tasks to select which fiber bun-
dles were the largest, smallest or most similar to a given
fiber bundle from a subset of fiber bundles. In the Likert
scale, the majority of the participants agreed that the tasks
were easier using MetaTracts than the volume rendering of
the original data or using the Hessian color map. The major-
ity of the participants also agreed that the extracted meshes
provided better spatial context than the volume rendering
of the original data.

9 EXPERIMENTAL RESULTS

We tested our technique on datasets with varying charac-
teristics. Dataset D1 is described in Section 3 (Fig. 2). Data-
set D1 has five fiber bundles along Z-axis and six along X-
axis for a total of eleven separate fiber bundles. With dif-
ferent cross-section sizes and varying degree of curvature
of the bundles, D1 is a complicated dataset. All of the fiber
bundles were identified correctly by our technique. Figs. 6
and 9 show the results of D1 decomposed into two orien-
tation clusters with each orientation cluster further decom-
posed into h ¼ 10 clusters followed by voxelization and
mesh extraction. The reader is referred Figs. 6e and 9d
where the thin and curved purple cluster bundle 7 is
extracted well.

Dataset 2 (D2) was introduced in Section 5.4. D2 is char-
acterized by a large hole/pore in a fiber bundle. Fig. 14
shows the results of our dataset 3 (D3). This CFRP dataset is
characterized by dense fiber bundle arrangement, with flat
and thin bundles. It also consists of two major fiber bundle
orientation, there are four fiber bundles along the X-axis
and five along the Z-axis. The dimensions of D3 are 300 �
350 � 300 voxels and the data type is uint16 (D1 is uint8).
Fig. 14a shows the scalar data along with a single slice. The
individual fiber bundles are indistinguishable. A green dot-
ted line shows one of the bundles marked by an expert.
Fig. 14b shows the result of computing MetaTracts and clus-
tering using our two step approach. The fiber bundles
belonging to the individual orientations are shown sepa-
rately. Fig. 14c shows the combined results. All the fiber
bundles have been separated out successfully. Fig. 14d
shows the result of voxelizing the entire volume.

The results of dataset D4 are presented in Fig. 15. This
dataset is characterized by dense carbon fiber bundles with

Fig. 13. The user evaluation consists of a set of queries on videos of our
results, volume rendering and Hessian color map. The questionnaire
tests the effectiveness of MetaTracts in visualizing “geometric structure”
and “spatial context”. The Likert scale goes from 1-5: strongly disagree,
disagree, neutral, agree and strongly agree. [7].

Fig. 15. Dataset D4 with dense carbon fiber bundles and pores inside.
(a) Shows the volume rendering of the raw XCT dataset, (b) shows the
clusters according to their individual orientations.

Fig. 14. Dataset D3 with flat thin and compact bundles. (a) Shows the
volume rendering and a 2D slice with one of the boundaries marked in
green, (b) shows the clusters according to their individual orientations.
(c) Shows the complete result. (d) Shows the voxelization of (c).

Fig. 16. (a) Length distribution of individual MetaTracts for a particular
bundle (unit for length is grid cube edge length: 2 mm).
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pores inside. Three fiber bundles are oriented along the Y-
axis and two fiber bundles are oriented along the Z-axis. D4
has a size of 600 � 200 � 200 voxels, a resolution of 1 mm
and the data type is uint16. The different orientations of the
fiber bundles in the raw XCT dataset (Fig. 15a) are barely
perceptible. In contrast, Fig. 15b shows the result of Meta-
Tracts clustering. Here, the individual fiber bundles have
been successfully clustered according to their orientations.
The fiber bundles are separated from each other and
distinguishable.

10 PARAMETER CHOICES

The critical parameters for extracting MetaTracts are K and
h, where parameter K is used by the K-means during orien-
tation clustering while parameter h which is used by the
hierarchical clustering. K denotes the number of major fiber
bundle directions. This is known in advance or can be esti-
mated by considering the weaving pattern.

Robustness of Parameter h . Fig. 17 shows the number of
MetaTracts in each cluster when the orientation cluster 1
(Fig. 6a) is hierarchically clustered into (h) ten clusters. It
also shows the minimum, maximum and median length of
the MetaTracts in each of the resulting clusters. The
ground truth was five separate fiber bundles. We observe
that even though the user given parameter was two times
the ground truth, the major fiber bundles remain well sep-
arated in accordance with our ground truth and the small
clusters (clusters 2, 3, 4, 5, and 7) have very few elements
and can be easily discarded. Thus we experimentally show
that our framework is robust to the choice of parameter h
for hierarchical clustering. This is an appealing trait of the
proximity based hierarchical clustering and thus providing
good results even when exact h might be unknown. The
robustness to parameter variation also reinforces our two-
step approach to clustering.

Fixed Parameters. The following parameters were fixed for
all the tests. We set the reliable Hessian threshold RH to be
0.3. A RH of 0.0 would mean all points have reliable local
orientation which would cause spurious MetaTracts detec-
tion. A very high RH would lead to a decline in number of
MetaTracts produced. Coefficients a and b in RH are as
explained in Frangi et al. [24] and set to 0.5. The length and
the radius parameters for the cylinders of MetaTracts decide
how coarse our approximation of the fiber bundles are.
These are dependent on the underlying fiber characteristic
and the weaving pattern. Larger cylinders will handle noisy
local orientation better as it inspects a larger number of

candidate points to extend the fiber. We used 10 and 2 for
length and radius (measured in grid voxel size), respec-
tively for all tests. A simpler geometry (e.g., D3) was experi-
mentally found to handle larger cylinders better. h in
Section 5.2 decides how quickly the hierarchical clustering
converges, experimentally values 0.3 to 0.6 removed 1:2� 5
percent of fibers (total number of fibers 
10,000) and gave
similar results. Parameter n intuitively acts as “resolution”
for the MetaTracts. Large n captures the features better and
generates smoother fiber bundles.

h and t in Equation (3) decide how quickly the value of
the factor decays; we have used integer values between [7–
10] and half the length of an individual cylinder respec-
tively. Our number of fiber bundle directions is limited.
Thus even for small m (cardinality of lower dimension in
orientation clustering), the distinction between the orienta-
tion clusters is preserved quite well. We compared
m ¼ 3; . . . ; 7 experimentally without any change in results.
Through our tests on 4 different datasets, we have experi-
mentally shown the robustness of our parameter choices.

11 LIMITATIONS

A key assumption of the method is “connectivity” (Sec-
tion 3). “Connectivity” ensures that we can travel in small
increments along a fiber bundle and expect similar features
(in our case orientation). If the “connectivity” criteria is not
fulfilled due to noise in the image, then the generated Meta-
Tracts will be inaccurate.

The clustering process also assumes that the fiber bundles
have a minimum width. The orientation clustering assumes
two orthogonal distinct orientations. While this might seem
restrictive, in practice (and as shown in our experimental
datasets) a large set of CFRP datasets share these characteris-
tics. The interactive visualization step opens this tool for
exploration of a broader range of datasets.

12 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a framework to extract and
visualize fiber bundles in composite materials. We show
that our framework works at comparatively low resolution
and with dense fiber arrangements (when extracting single
fibers might not be possible). It handles complex fiber pat-
terns such as “cross overs”, “braiding” and “holes/pores”.
In addition, we demonstrated a tool to interactively investi-
gate and analyze voxelized fiber bundles generated with
the MetaTracts approach.

In future, we plan to increase the precision of the extrac-
tions and include uncertainty based visualization to better
portray the surface of separations. We also plan to decrease
extraction times.
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Abstract

Visual computing has become highly attractive for boosting research endeavors in the materials science domain. Using visual
computing, a multitude of different phenomena may now be studied, at various scales, dimensions, or using different modalities.
This was simply impossible before. Visual computing techniques provide novel insights in order to understand complex material
systems of interest, which is demonstrated by strongly rising number of new approaches, publishing new techniques for materials
analysis and simulation.
Outlining the proximity of materials science and visual computing, this state of the art report focuses on the intersection of
both domains in order to guide research endeavors in this field. We provide a systematic survey on the close interrelations
of both fields as well as how they profit from each other. Analyzing the existing body of literature, we review the domain of
visual computing supported materials science, starting with the definition of materials science as well as material systems for
which visual computing is frequently used. Major tasks for visual computing, visual analysis and visualization in materials
sciences are identified, as well as simulation and testing techniques, which are providing the data for the respective analyses.
We reviewed the input data characteristics and the direct and derived outputs, the visualization techniques and visual metaphors
used, as well as the interactions and analysis workflows employed. All our findings are finally integrated in a cumulative matrix,
giving insights about the different interrelations of both domains. We conclude our report with the identification of open high
level and low level challenges for future research.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—

1. Introduction

During the past decades, a clear trend formed in industry of con-
stantly driving research towards tailored materials for new, cost-
efficient, function-oriented, highly integrated and also light-weight
components with previously impossible specifications. Industries
such as health care, agriculture, construction, packaging, sports
equipment, automotive, aeronautics, environment, protection and
others thus increasingly adopt these tailored materials to stay ahead
of competition. The understanding, discovery, design and use of
(new) materials as well as material systems are integral parts of ma-
terials science and permanently driven to new frontiers. Ambitious
projects boost the development of novel materials for future high
quality components. Some outstanding activities are for example
found in the manufacturing of wall components for future fusion
reactors as presented by Kim et al. [KJS∗14], the design of novel
anode materials for energy storage in batteries as presented by Gyu-
lassy et al. [GKLW16], or the analysis of advanced composite com-
ponents for aeronautic and automotive applications as presented by
Bhattacharya et al. [BHA∗15]. These projects all share the fact that
only a detailed understanding of the material systems of interest en-
sures to met the application specific targets. Their targets are highly

divers and may range from new materials withstanding tempera-
tures of more than 15 million degrees Celsius, deciding whether
carbon nanospheres will be the anode material for future lithium
ion-based batteries, to developing carbon fiber reinforced compos-
ite materials for the fuselage of a new generation of airplanes. For
knowledge discovery, also simulations of material systems are of
high importance when designing novel, outstanding materials. Es-
pecially simulations of the material systems in their targeted use
and environments are catching up momentum: An earlier approach
by Laevsky et al. [LTM01] provides an interactive visualization and
computational steering tool for interactive numerical simulations of
a glass pressing process. Patkar and Chaudhuri [PC13] investigate
the mechanics of wetting porous solid objects by computations of
fluid flows through porous media. Another technique presented by
Gyulassy et al. [GKLW16] simulates the synthesis and ion diffu-
sion of battery materials. In all these areas, visual computing gen-
erates new and previously unknown insights, supporting material
scientists in understanding the material’s inner structures and its
behavior while in use. Aside these introductory achievements, the
potential impact of visual computing is found in virtually any as-
pect of materials science. To demonstrate the interrelation of visual
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computing and materials science we continue in our motivation for
this report with a detailed consideration of an example, showing
how the solution to a materials science problem was facilitated by
visual computing.

2. Motivation

A strong demand is prevalent in materials science towards methods
for visualizing, abstracting, combining, exploring and quantifying
materials data in novel, challenging applications. We thus start with
an intuitive example for visual computing enabled materials sci-
ence, analyzing and simulating composites. (section 2.1).

2.1. Example: Visual Analysis of Composite Materials

Composite materials are of high interest in a broad variety of in-
dustries ranging from leisure, automotive, aeronautics to space in-
dustry and beyond. For the development and simulation of (new)
composites as fiber reinforced polymers (FRP), the properties of
the individual components (i.e., fibers, matrix, pores, inclusions,
voids) are crucial, as they mainly determine the composite’s perfor-
mance characteristics in use. Due to the lack of computing power
and real data, material simulations used to apply simple models:
Pores and voids were approximated using ellipsoids, fibers us-
ing cylinders based on the bulk material’s specifications. More re-
cently, X-ray Computed Tomography (XCT) was applied on pro-
totype composite materials to get a closer view on interior struc-
tures. To precisely analyze XCT scans of composite components,
Weissenböck et al. [WAL∗14] developed Fiberscout, a visual anal-
ysis tool exploring individual fibers as well as fiber classes (sets of
fibers with similar characteristics). Fiberscout links a parallel co-
ordinates plot and a scatterplot matrix with conventional 2D slice
views and a 3D renderer as well as polar plots. As input, the tool re-
quires pre-segmented, labeled data extracted from respective XCT
scans. Despite being initially designed for fibers only, the tool was
extended in a later work to pre-segmented data of pores, inclu-
sions and other voids [WRS∗14]. In this update, the computation
of mean objects for classes of individual features according to Reh
et al. [RGK∗13] was integrated (see Figure 1). Combining these
techniques, the extraction of mean objects and mean shapes of fea-
ture classes of interest became possible, in order to feed material

Figure 1: MObjects: The individual objects on the left side are
combined to a Mean Object, and a cut through of it on the right
side. The blue core of the object depicts a high probability of
voxels belonging to the MObject. This core is surrounded by the
yellow medium probability layer which together with the outmost
low probability layer forms the uncertainty cloud. c©2013 IEEE.
Reprinted, with permission, from [RGK∗13].

simulations with much more precise models on the material’s in-
ner structures. The enhanced precision of the simulation now al-
lows to produce components fulfilling the target specifications with
less material (cheaper), which are even lighter (more economic).
Especially in aeronautic applications this is a standing strong de-
mand. Furthermore, these new visual analysis functionalities allow
to distinguish pores, inclusions, or voids into critical and uncritical
defects based on a wide variety of characteristics. Therefore, non
destructive testing (NDT) engineers may now safely decide, if an
80.000 $ aeronautic component may fly or needs to be scrapped.
This example impressively shows how visual computing enables
solving important materials science challenges and how it opens
previously impossible insights into complex materials and their be-
havior in use.

Aside this example, an increasing number of materials science
projects make use of visual computing and especially visualization
or visual analysis approaches in their research. In literature, how-
ever, there is still a huge gap observable regarding reviews analyz-
ing of the body of work at the intersection of those two domains.
Apart from earlier reviews on specific niches, such as the visual-
ization of industrial computed tomography data for non-destructive
testing as presented by Huang et al. [HMMW03], or data fusion for
non destructive evaluation as presented by Liu et al. [LFK∗07], or
dimensional metrology using computed tomography as presented
by Kruth et at. [KBC∗11], to date there is no comprehensive survey
available giving insight into this growing area of research. In this
work our main goal is to close this gap. By analyzing visual com-
puting approaches for materials science in a structured literature re-
view and by integrating our own experience, we shed light on how
both areas profit from each other. To analyze the body of existing
work we follow the structured literature research similar to Sedl-
mair et al. [SHB∗14] in their conceptual framework on visual pa-
rameter space analysis, Bayer et al. [BHP15] regarding GPU based
large-scale volume visualization, and Alsallakh et al. [AMA∗14] in
terms of visualizing sets and set-typed data. We first analyze the rel-
evant literature regarding their high level tasks, as well as their used
testing or simulation techniques. We review the data characteristics
as well as visualization techniques used as well as their suggested
interaction concepts. We see the main contributions of our work in
the following points:

1. Review and classification of the current body of literature at the
intersection of visual computing and materials sciences,

2. Extraction of a cumulative matrix demonstrating the intersec-
tions of both fields,

3. Analysis of the application areas as well as their high level vi-
sual computing, visual analysis and visualization tasks for ma-
terials sciences,

4. Investigation of data acquisition methods regarding the charac-
teristics of the different inputs vs. direct and derived outputs,

5. Discussion of the used visual metaphors as well as why they are
preferred over others,

6. Discussion of the used interaction concepts as well as the corre-
sponding analysis workflows,

7. Identification of open research challenges to guide future re-
search endeavors in this area.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.
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3. Method

This state-of-the-art-report is based on a structured literature review
at the intersection of visual computing and materials sciences. The
related literature was compiled, reviewed and clustered by two core
annotators, i.e., the authors of this report, with continuous feedback
from two domain experts in materials science as well as three ex-
perts in visual computing. These external advisors were continu-
ously provided with concepts and drafts for the submission over a
period of more than a year, asking for their feedback on the report,
the material systems, the tasks, relevant testing and simulation tech-
niques. In addition, the future challenges were discussed in a round
of specialists from visual analysis, non destructive testing and ma-
terials science at a recent workshop. Regarding the core annotators,
one of them is an expert, who is active his research at the inter-
section of visual computing and materials sciences for more than
12 years at the time of writing this report. He is experienced in
both domains, visual computing as well as materials sciences. The
second author is a high potential junior researcher also working
at the intersection of visual computing and materials science. For
our state-of-the-art-report the related literature at the intersection
of visual computing and materials sciences was screened yielding
a total of 241 research papers, which were considered as potentially
interesting: We therefore started off with this initial set of contribu-
tions on the one hand from top level visualization, visual analysis
and visual computing conferences and journals (e.g., IEEE Trans-
actions on Visualization and Computer Graphics, Computer Graph-
ics Forum etc.), and on the other hand from top level materials test-
ing, materials simulation and materials sciences publications (e.g.,
Journal of Materials Science, Journal of Nondestructive Evaluation,
etc.), which showed interrelations of both fields. In the next step we
further extended our review to smaller conferences and venues, as
well as niche topics in both areas. For the classification of the full
set of papers we applied a hierarchical classification scheme: The
complete set of papers was initially classified regarding relevance
on a scale of zero to five stars from no relevance to core relevance.
Core relevant contributions are required to reach a materials sci-
ence research target through extensive use of visual computing ap-
proaches. Papers of this category include novel visual computing
techniques for materials science as well as applications or adapta-
tions of existing visual computing techniques within a specific ma-
terials sciences domain. As relevant papers contributions are con-
sidered which integrate visual computing with limited novelty for
solving a materials science task. Papers, which are classified with
passing relevance, focus mainly on either of the two domains and
hardly interfere with the other one. As not relevant papers we clas-
sified contributions, which do not demonstrate the intersection of
the two domains. This process led to 88 contributions, classified
from relevant to core relevant, which are to be discussed in this
report. The second level review targeted a representative overview
of all papers in the form of a matrix. We thus investigated the set
of 88 papers in detail using an open coding process and manually
registered our findings in a dynamically growing and continuously
adapted matrix of features based on the following main categories:
application, high / low level tasks, material system, data acquisition
and characteristics, visual computing / visual analysis aspects. To
ensure a common understanding continuous discussions amongst
the annotators have been carried out at least on a weekly basis dur-

ing filling the matrix of features. In these discussions the main cat-
egories were also further subdivided and refined in lower levels, in
order to ensure that no information is lost. After all relevant pa-
pers were encoded in the feature matrix, a manual clustering of the
subcategories was carried out as next step: Subcategories of lower
interest showing only limited contributions, applications or knowl-
edge discovery for our matrix, were discussed and consequently
cleared, if only passing knowledge discovery was identified. The
clustering iterated until descriptive subcategories were found. The
results of our literature research were integrated in a cumulative
matrix which correlates the analysis tasks with the used visualiza-
tion and interaction techniques. At the corresponding intersections
we integrated the respective application areas as seen in Figure 2.

4. Visual Computing in Materials Science

Visual computing and especially visualization as well as visual
analysis have become highly attractive to generate new, previously
impossible insights for materials science by studying a multitude
of different phenomena at multiple scales, dimensions, or using
different modalities. In the following sections, we define materi-
als science and its various material systems. We further define vi-
sual computing and review tasks to be solved, the simulation and
testing techniques as well as the used visualization and interaction
techniques. During the iterative process of analyzing the body of
literature, we classified and clustered the relevant related work in a
matrix revealing the different interrelations of both fields. Figure 2
outlines all relations in detail.

4.1. Definition of Materials Science

Materials science involves the subareas of understanding, discov-
ery, design and use of (new) materials as well as material systems.
As outlined by Adrian Sutton [Sut] from the University of Oxford,
it is difficult to find a comprehensive definition for materials sci-
ence, which covers all subtle niches of the field. Therefore, ma-
terials science is best defined by its core areas and tasks, e.g., as
found in the description of Springer’s Journal of Material Science.
According to their definition materials science includes:

"... techniques for studying the relationship between
structure, properties, and uses of materials. The sub-
jects are seen from international and interdisciplinary
perspectives covering areas including metals, ceramics,
glasses, polymers, electrical materials, composite mate-
rials, fibers, nano structured materials, nano composites,
and biological and biomedical materials ..." [Spr]

This description outlines the broad spectrum of materials sci-
ence, its diversity as well as core relevant domains. For all areas of
understanding, discovering, designing and using materials, a pri-
mary objective of materials science is found gaining a profound
knowledge of the material’s properties (material analysis) as well
as the material’s performance characteristics (material simulation).
Visual computing holds a large potential in retrieving and visual-
izing complex materials characteristics to materials scientists. For
example, the properties of advanced materials are determined by
material analysis techniques and visualized in order to form a men-
tal image of regional distributions, critical areas or features of in-
terest. Furthermore, regarding their performance, (new) materials
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are increasingly modeled and simulated within their targeted us-
age scenario. To make sure that the generated simulation results
correspond to reality, they are subsequently verified by means of
destructive (DT) and non destructive testing (NDT) techniques us-
ing visual computing (see also Straumit et al. [SLW15]). While
non-destructive testing enables to reuse the same specimen for tests
using supplemental techniques, destructive techniques destroy the
specimen during evaluation.

4.2. Material Systems

To provide an overview about promising material systems as well
as the structures and features of interest, we introduce material sys-
tems in the following paragraphs, for which visual computing tech-
niques are highly relevant:

Composite Materials are found in a wide variety of industries
ranging from leisure, sports, electronics, automotive, aeronautics,
to space industry. Especially, advanced composites are regarded as
materials of the future in many industries, due to their tailored char-
acteristics for their target application area. They are composed of
individual components to fulfill the targeted requirements in terms
of strength, stiffness, function-orientation and light weight. Com-
posite materials feature a base matrix material, which forms the
components and holds the reinforced components in place. The
reinforcements are carrying the loads of the component while in
use, in order to end up in a material system of superior behavior as
compared to conventional materials. The main part of the reviewed
literature in the area of composite materials centers around fiber re-
inforced materials. For example, carbon fiber reinforced polymers
(CFRPs) show a low weight, but high specific stiffness and high
specific strength. CFRPs are also cost effective for the properties
they deliver, as stated Bhattacharya et al. [BHA∗15]. CFRP is thus a
promising candidate material for a large variety of new automotive,
aeronautic and space components. Besides CFRPs there are many
other fiber reinforced composites in industrial use. Glass fiber rein-
forced composites (GFRP) integrate glass fibers as reinforcements
and allow the manufacturing of cheap and robust injection molded
parts as indicated by Kastner et al. [KPHF08]. GFRPs are thus
found, e.g., in housings of electronic or automotive components.
Fiber reinforced ceramic matrix composites (CMC) withstand high
temperatures and show a high resistance to thermal shocks, which
opens application areas of this system for heat shields or ceramic
disc brakes systems. Further reinforcement components are found
in steel fibres as discussed by Fritz et al. [FHG∗09] and Westen-
berger et al. [WEL12], biological fibers, (e.g., wood-based fibers as
presented by Tran et al. [TDD∗12] or hemp fibers as discussed in
Placet et al. work [PMF∗14]), or even ultra high molecular weight
polyethylene fibers which are used in Intrater et al. [IHL∗05].

Polymer Materials, especially polymer foams, are present in
many advanced industrial applications due to their advantageous
characteristics: Polymer foams feature stiff, strong, as well as com-
pressible cellular cores and thus attracted significant interest for
energy absorption applications. As their cellular structure shows
a stochastic behavior, polymer foams require a detailed structural
analysis of their foam network. Moreover, regarding the simulation
of polymer foams under load, the respective mechanical properties
of this material system are typically not linear but hyper-elastic as

described by Patterson et al. [PCH∗15]. Even in the manufacturing
of polymer foams visual computing is required, observing the plas-
tic foaming processes under shear stress as presented by Wong et
al. [WP12]. Another example of new polymer materials in need of
detailed investigations are semi-crystalline polymers. As discussed
by Tabatabaei et al. [TBNP14] the properties and morphology of
semi-crystalline polymers need to be continuously analyzed during
the crystallization process in order to reach the targeted application
properties, which are mainly defined by the crystallite structures. In
general, polymers are found in important material systems for fu-
ture applications. For this reason this field is a highly active subarea
of research inside materials science, which is especially in need for
visual computing supported studies.

Non-Metal Inorganic Materials (apart from advanced com-
posites) typically contain subcomponents such as glass (Laevsky
et al. [LTM01]), concrete (Algernon et al. [AGM∗08] and Mari-
noni et al. [MVM∗09]), rock (Bimber et al. [BKA∗11]), ceramics
(Weber et al. [WRR∗11]) or gas (Ushizima et al. [UMW∗12]). As
these subcomponent materials are well known, visual computing
supported investigation is mainly required in this area for analyz-
ing highly specialized material subsystems. For example, using mi-
cropowder injection molding, complex shaped ceramics or metallic
parts are produced, which show a special need for visual comput-
ing supported analysis. Another example is given in Weber et al.’s
work [WRR∗11], who investigated the powder-binder separation
using synchrotron-based microtomography and 3D image analy-
sis. Furthermore, fused silica glass is used in the work of Galvin
et al. [GGB01] for photo lithography or for first surface mirrors
in telescopes. The authors analyzed surface strain and polishing
artefacts using scanning electron microscopy. The determination
of quantitative material properties is of high relevance in order to
advance the material for future applications.

Metals and Alloys are still widely used in industry applications,
leisure, automotive and aeronautics. In automotive and even in
aeronautics applications, a renaissance of these conventional mate-
rials is currently being observed in the form of novel high strength,
low density steels or aluminum alloys for lightweight construction.
For example Al2024 is such an alloy, which is increasingly used in
automotive and aeronautic industry because of its low density and
high damage tolerance. Typically, metallic materials are processed
in various manufacturing steps such as forging, drawing, rolling in
order to tailor their characteristics to the application’s requirements.
As the material’s micro structure and related characteristics mainly
define the overall properties of the metal or the alloy, these features
are crucial to be analyzed and to be controlled in manufacturing.
To achieve this target, visual computing methods are used by Bhi-
mavarapu et al. [BMBN10] to explore the compressive deformation
behavior of Al2024. They encode the power density as well as the
instability of the alloy in 2D and 4D maps. Ductile cast iron as a
further example of this area provides high strength, high ductility
and high fatigue strength depending on the micro structures of the
graphite particles inside the material. These graphite micro struc-
tures are analyzed and quantified according to form and size param-
eters in visual analysis tools as presented by Fritz et al. [FHG∗09].
In addition to the micro structure of the graphite particles they also
investigate steel fibers using directional sphere histograms encod-
ing their orientation in the material system. Another highly interest-
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Figure 2: This matrix encodes the result of our systematic literature study at the intersection of Visual Analysis and Materials Science. In an
iterative process analyzing the body of literature, we classified and clustered the relevant related work revealing the different interrelations
of both fields.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

651



C. Heinzl & S. Stappen / STAR: Visual Computing in Materials Science

ing material system in this area is found in AlSiC, a metal matrix
composite consisting of an aluminium matrix with silicon carbide
particles. While AlSiC composites offer the high thermal conduc-
tivity of a metal, they facilitate to maintain the low thermal expan-
sion of a ceramic. Reh et al. [RAK∗15] presented a graph based
technique for tracking those particles and other features of interest
over time / over various steps of a heating / cooling process.

Construction and Building Materials as well as the corre-
sponding material systems are typically referred to as well known
materials, which have been used for ages in similar applications.
Despite their seeming simpleness also construction materials often
contain many different components featuring complex shapes. For
example, steel fiber reinforced concrete allows to generate tailored
material system for high tech applications such as the construction
of tunnels. An investigation of steel fibres in such sprayed concrete
was presented by Fritz et al. [FHG∗09]. In contrast to the material
systems described before, these materials are typically crafted for
direct application in order to fulfill a specific purpose, without fur-
ther processing or assembly. The application areas of construction
and building materials and material systems are widespread and
range from cultural heritage applications (Li et al. [LZS16]), civil
engineering (Kim et al. [KHK∗12] and La et al. [LGKN15]), pri-
vate buildings and construction (Ham et al. [HGF14]) to electronic
devices (Protopopov et al. [PD00]), printed circuit boards (PCBs)
(Cicchiani et al. [CHSW08]) or even micro-electromechanical Sys-
tems (Fisher et al. [FH08]).

Biological and Biomedical Materials are used as reinforcement
components for new composites. For example, plant-based fibers,
such as wood-based fibers as used by Tran et al. [TDD∗12], or
hemp fibers utilized by Placet et al. [PMF∗14], are currently tested
for various applications as a promising reinforcements. In contrast,
Hu et al. [HRN∗03] explore biological materials as such. The au-
thors propose an approach for the segmentation of the meiotic spin-
dle within a mouse egg from Confocal Laser Scanning Microscope
(CLSM) volume data. Their method is based on expectancy and
standard deviation values of voxels extracted using a Weibull prob-
abilistic framework for segmentation. A further application field of
biological and biomedical materials deals with copying the struc-
ture of biological materials as well as their characteristics to inor-
ganic materials.

4.3. Definition of Visual Computing

Visual computing integrates computer science disciplines dealing
with the acquisition, the analysis and the synthesis of (visual) data
using computing resources in applications such as industrial qual-
ity control, medical image and data analysis, robotics, multime-
dia systems, computer games, etc.. Aside others, visual computing
thus covers aspects from image processing, visualization, computer
graphics, computer vision, virtual and augmented reality, pattern
recognition, machine learning, as well as human computer interac-
tion. Furthermore, visual computing is also strongly related to other
science domains such as mathematics, physics and cognitive sci-
ences. A core aspect of visual computing is found in visualization
and visual analysis. As defined in Munzner’s book “Visual Anal-
ysis and Design” [Mun14], computer-based visualization systems
provide visual representations of datasets, which are designed to

help people carry out their tasks more effectively. The book further
indicates that visualization is especially beneficial, when there is
a need to augment human capabilities rather than replace people
with computational decision-making methods. This characteristic
of augmenting human capabilities perfectly covers the visual com-
puting supported materials sciences tasks discussed in section 4.4.

4.4. Tasks of Visual Computing Supported Materials Sciences

The analysis and simulation of the material systems as discussed in
section 4.2 pose very different tasks and challenges on visual com-
puting. In the following section we shed light on respective tasks
and consider them in more detail. Generally, the main challenges
revolve around two large topics: the simulation of material systems
and the analysis the material systems.

Simulation of Material Systems is highly important for design-
ing, manufacturing, processing and evaluating novel material sys-
tems in their application areas. Tailored visualization and visual
analysis are required to solve the domain’s research questions. For
the simulation of material systems we identified the following three
major tasks for visual computing aside the actual computation of
the simulation:

• Exploration and Visualization of Finite Element (FE) Simula-
tions is an important task facilitated by visual computing to ex-
plore the system of interest in its target application. Aside mate-
rials sciences, finite element models and finite element simula-
tions are frequently used in computer graphics, robotics, special
effects or virtual reality [LB15]. Typically, FE data is visualized
using surface-based approaches. This is mainly due to the na-
ture of non uniform grids as typcially used in FE simulations as
well as surface based representations used for modeling the sim-
ulated domain. More flexibility is found in volumetric visualiza-
tion techniques, which support the interactive exploration of the
complete data. To render these datasets using ray-casting, uni-
formly distributed sample points are required along each view-
ing ray. Bock et al. introduced an approach [BSL∗12], which
transforms the uniformly distributed sample points into the mate-
rial space for each cell using a coherency-based method, decou-
pling expensive world-to-material space transformations from
the rendering process. Even for higher order FE models the au-
thors achieved frame rates, which allow for interactive data ex-
ploration. Also earlier approaches as presented by Laevsky et
al. [LTM01] were focused on the exploration of FE simulations
using interactive steering of the simulation and monitoring the
simulation’s outputs. The application area of this work is found
in glass being pressed in a mold, modeling glass as a Newtonian
fluid. The goal of this approach, aside understanding the pressing
process, is to obtain optimal shapes of new molds by a detailed
evaluation of the simulation results and a feedback loop of the
generated results back into the FE simulation process.

• Visual Analytics of Computational Fluid Dynamics marks a fur-
ther crucial task in the area of simulating material systems. Of
special importance in this area is the exploration of the perme-
ability and related properties of porous media for various appli-
cations such as the storage of CO2 in porous materials. Uzshiz-
ima et al. [UMW∗12] present a framework for the analysis and
quantification of porous media using multi-scale topological de-
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scriptors of the underlying material of interest. In contrast to a
local exploration of flow trajectories interacting with the solid
structures, the authors target to extract the pore network for esti-
mating the fluid flow using topological descriptors. The porosity
is used to finally compute the permeability of the porous media.
With their framework the authors facilitate to characterize syn-
thetic material phantoms composed of packed spheres as well
as 3D high-resolution X-ray computed tomography data regard-
ing porosity. Patkar and Chaudhuri [PC13] focus on porous solid
media interacting with fluids, such as cloth getting wet by a fluid
jet or porous stones absorbing water. They make use of smoothed
particle hydrodynamics for modeling the fluid dynamics within
the specimen. In a three stage approach, they first model the fluid
absorption of the object, the transport of fluid inside, as well as
finally the dripping of extra fluid by oversaturated parts. They
visualize the generated results in animations of the 3D domain.

• Analysis and Visualization of Molecular Dynamics Simulations
is especially important for understanding and conditioning novel
materials. Molecular dynamics simulation is a widely used tech-
nique to analyze material characteristics as well as structural
changes under external forces. Gyulassy et al. [GDN∗07] present
an application, which uses molecular dynamics to simulate the
particle impacts at various scales: In the nanometer range, par-
ticles of several thousands of atoms may be used to smooth or
condition surfaces. In micro and macroscopic scales, this kind of
simulation is used to mimic impact damages as well as poten-
tial materials to compensate. To understand the behavior and the
interactions of the underlying materials, the authors carried out
molecular dynamic simulations, which model the impact of solid
grain material on low density foam. The domain specialists were
interested in how the impact craters are forming for two reasons:
(1) how is the structure around a crater changing and (2) how are
quantitative values affected such as the overall porosity. Guy-
lassy et al. introduced methods for the construction of distance
fields, which are topologically clean in order to extract, charac-
terize, and visualize relevant filament structures in the porous
material. In a recent work, Gyulassy et al. [GKLW16] employed
and extended their findings to simulate the synthesis and ion dif-
fusion of battery materials using large-scale molecular dynamics
simulations. Their technique shows how visual analysis is used
to support domain specialists in the investigation and selection of
novel anode materials for future batteries. Other approaches ad-
dress the sheer data sizes generated by large-scale molecular dy-
namics simulations. Frey et al. [FSG∗11] proposed a technique
based on loose capacity-constrained Voronoi diagrams, which
allows to replace the huge amount of simulated particles by a
small set of representatives. These representatives are required
to capture the main characteristics of the particle density and to
exhibit coherency over time for creating visualizations, which
reflect both particle distribution and geometric structure of the
original data. The authors demonstrate their method on molec-
ular simulation datasets of laser ablation from solid aluminum,
compressed argon surrounded by vacuum as well as colliding
liquid methane and ethane droplets.

Material Analysis denotes the second main area in materials
science which makes extensive use of visual computing and thus

profits from recent techniques. For this area we identified the fol-
lowing tasks, in which visual computing is of core relevance:

• Feature Extraction and Quantification is the most important task
in destructive and non destructive testing. The primary goal aside
the plain extraction and identification of individual features is
found in the investigation of their distribution throughout the
specimen as well as their individual properties. As typically the
number of features is high and the characteristics of each fea-
ture may exceed 25 or more properties, visual analysis tech-
niques are required to explore the generated data. A lot of ap-
proaches facilitating feature extraction and quantification make
use of segmentation techniques in order to extract the features
of interest in 3D as presented by Hu et al. [HRN∗03]. Once the
feature of interest is extracted, the corresponding properties may
be computed and visualized in histograms, line plots, bar charts
or similar representations. Features of interest may be required
(e.g., fibers, particles, reinforcements, etc.) as well as undesired
structures (e.g., voids, inclusions, impurities, etc.). For features
such as fibers, pores and voids, typically properties as the di-
ameter, length, volume, shape, orientation, etc. are computed
and evaluated together with their distribution. Weissenböck et
al. [WAL∗14] employ in their approach more sophisticated visu-
alization and interaction techniques such as parallel coordinate
plots, scatter plot matrices and linked views to facilitate the clus-
tering of interesting features. Furthermore, interactions between
features of interest are investigated. They influence the overall
material properties heavily as stated by Hartl et al. [HJL15], who
analyze the effect of fiber orientation, stress state and notch ra-
dius on the impact properties of glass fiber reinforced polymer
samples. Also Gusenbauer et al. [GRKK14] extract and quan-
tify non metallic inclusions in steel in order to investigate their
correlation with the breakage behavior in fatigue tests.

• Stress and Deformation Analysis is required by domain special-
ists to get insights into the material while being in use and under
load. Aside specific properties and characteristics of materials
such as flow stress, strain and strain rate, surface strain and tem-
perature under strain, also their deformation behavior during the
targeted usage are of interest. An example for stress and defor-
mation analysis is found in the work of Lisle et al. [LBP∗15],
investigating the damage of woven composites under tensile and
shear stress using infrared thermography and micrographic cuts.
The authors computed stress-strain curves as well as tempera-
ture variation fields of the specimens encoded in 2D colormaps
and used 2D scanning electron micropcopy (SEM) micrographs
for verification. Also Amirkhanov et al. [AAS∗16] proposed a
visual analysis tool for exploring and analyzing defects and de-
formations occurring under increasing load conditions in glass
fiber reinforced polymers by applying 4DCT interrupted in-situ
tensile tests. The authors employ surface based representations
as well as heat maps showing the evolution of defects and defor-
mations over time.

• Fatigue Testing and Damage Analysis is a further escalation
step of the previously discussed area of stress and deforma-
tion investigation. The domain specialists’ tasks are to figure
out where and why a material or a specimen breaks when ag-
ing. Damage analysis is for example scope of work in Marinoni
et al. [MVM∗09]: The authors study alkali-silica reactions in ag-
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ing samples using phase contrast X-ray computed tomography
(XCT) and investigate alkali-silica reactions regarding their re-
active aggregate progressive dissolution together with a deposi-
tion of gel, during and after the reaction. During the aging pro-
cess the specimens are deformed and they develop of microc-
racks in the structure. The results were compared to traditional
2D techniques such as optical microscopy and SEM. The main
scope of interest was to find a method, which allows the ren-
dering of microstructural features in the specimen. The results
are presented in 2D slice images as well as 3D renderings of the
segmented and colorcoded phases. Further application areas of
damage analysis are found in the manufacturing of electronic de-
vices or the construction of buildings, which suffer from similar
damage types. For example, faults within printed circuit boards
(PCBs) and their components are investigated by Cicchiani et
al. [CHSW08]. The main goal of their work was to obtain a pos-
itive visual confirmation if a specific failure occurred in the PCB.
Mayer et al. [MLK∗08] target to characterize and classify indica-
tions of defects in concrete buildings and even go a step further:
They target the prevention of faults by estimating cracks as well
as the crack growth of concrete materials. Other types of dam-
age are found in corrosion and delamination which are topic of
research of La et al. [LGKN15] and Yashiro et al. [YTT07].

• Dimensional Measurements, in contrast to the previous tasks,
this task centers around the traceable dimensioning and toler-
ancing of measurement features such as straightness, evenness,
cylindricity, etc., which is essential for industrial quality con-
trol. The practitioners need to know if a specimen fulfills the
required internal and external standards. Using conventional tac-
tile or optical coordinate measurement machines, mainly plots of
points, lines or surfaces are evaluated, which reflect the applied
measurement strategy together with actual and nominal values
as well as tolerance bands. In recent years much more informa-
tion became available when X-ray computed tomography (XCT)
was introduced for industrial metrology purposes. Using XCT,
the uncertainty of the generated data may be estimated at every
spatial position of the data, as the surfaces and interfaces char-
acterizing a measurement feature are only implicitly given in the
scanned attenuation coefficients. Information on the quality of
the transition air to material or material to material is prevalent
in the XCT data, which may be affected by artifacts and other
irregularities. While earlier approaches are tasked to reduce and
remove artefacts as presented by Heinzl et al. [HKG07], more
recent techniques evaluate the datasets’ uncertainty. For exam-
ple, Amirkhanov et al. [AHK∗13] integrate information on the
uncertainty of a measurement feature as context information in
commonly used visual metaphors of dimensional measurements,
which is strongly related to the next task:

• Uncertainty Quantification and Visualization builds upon the ex-
tracted (measurement) features and targets to determine the un-
derlying uncertainty budgets: Data acquisition and evaluation
typically introduce various types of uncertainty stemming from
the environmental conditions, the specimen, the measurement
system, the analysis pipeline and other influences. The domain
specialists require to quantify and visualize the uncertainty of
their measurements in order to avoid that wrong assumptions
are made on the data as stated by Amirkhanov et al. [AHK∗13].
As shown by Schonfeld et al. [SB15], a lot of research efforts

have been put into finding and verifying local quality measures
for standard phantoms. An example of such a measure is the
local quality value as presented by Flessner et al. [FMHH15],
analyzing the volume data in the proximity of an extracted sur-
face/interface point of a measurement feature. The task of uncer-
tainty quantification and analysis was identified as separate task
because of its high relevance in both application and visualiza-
tion domain.

• Optimization of (parts of) a workflow is another task frequently
found in visualization and visual analysis for materials science.
Typically, methods in this area put their focus on optimizing a
specific aspect of the simulation, the data acquisition or the data
evaluation pipeline. Some targets in this area are for example to
increase the signal-to-noise ratio, to optimize the measurement
or testing parameters in order to utilize them in new materials or
or to simply improve the visual representation of the underlying
data. For example, Bimber et al. [BKA∗11] present an approach
on closed-loop feedback illumination for optical inverse tone-
mapping in light microscopy. Amirkhanov et al. [AHR∗11] in-
troduce a method for projection based metal artefact reduction in
XCT or Wang and Mueller [WM04] generate sub-resolution de-
tail in images and volumes using constrained texture synthesis.
In terms of optimizing the production process of materials itself,
this task is also strongly related to the exploration and visualiza-
tion of finite element simulations of some material or component
as presented by Laevsky et al. [LTM01].

• Risk Analysis marks the final task we identified. For this task,
mainly cultural heritage applications are of interest such as ana-
lyzing the risk, cultural heritage sites are facing because of en-
vironmental or other influences. Qian et al. [QSCZ16] propose
a visual analysis technique for the assessment of the risk of de-
terioration, which is focusing on matching the major needs of
the domain with the objectives of deterioration. They encode the
risks of detoriation in spatial views, integrating techniques of vi-
sual analytics for analyzing the risk level. A similar visual anal-
ysis method is provided by Li et al. [LZS16] investigating the
deterioration risk of mural paintings using site-level visualiza-
tion based on a circle packing layout, a chord diagram tool and
heat map encoding the overall disruption risk.

In the next section we review the different methods in materials
sciences used to solve these challenges. While the FE, CFD and
other simulations as well as the corresponding models for the ma-
terial systems of interest are generated similarly as for other appli-
cations outside materials science and as simulations are similarly
returning fields of scalar, vector and tensor data, we do not con-
sider the simulation techniques themselves here any further but re-
fer the reader to indicative papers of Laevsky et al. [LTM01] for
FE simulation, Uzshizima et al. [UMW∗12] for CFD simulation,
Gyulassy et al. Gyulassy et al. [GKLW16] for molecular dynamics
simulation as well as to the tasks identified in section 4.4. We put
our focus in the next section on the material analysis, the respec-
tive testing techniques as well as the generated data, which are very
different from each other regarding their principles and capabili-
ties. The characteristics of the testing techniques mainly determine
which visualization technique is used to solve the tasks as descibed.
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(a) Specimen (b) X-ray computed tomography (c) Ultrasonic testing (d) Thermography

Figure 3: Comparison of thermography, ultrasonic testing, and XCT data for the inspection of delamination in wind turbine blades made of
E-glass/polyester. Reprinted from [AMLA∗11], with permission from Elsevier: (a) Photography of the specimen. Teflon inserts in different
dimensions and depths are used for comparing different NDT methods. Furthermore, thin but severe delaminations simulate defects. (b)
X-ray computed tomography: 2D slice image of the specimen in Figure 3a. XCT did not detect thinnest delaminations due to resolution
constraints. Despite this fact, such slice images or 3D reconstructions are used to find all kinds of defects, e.g., cracks, voids, inclusions, etc.
in the specimen. (c) Ultrasonic testing image (C-scan) of the specimen in Figure 3a. Delamination defects are clearly visible as the back
reflection intensity of the C-scan is reduced by any defect at any depth. (d) Thermography image visualizing temperatures obtained with
transmissive, pulsed thermography of the specimen in Figure 3a. All five defects have been detected. Blurring in thermography images is a
direct consequence of the heat of the delamination defects spreading within the specimen.

4.5. Testing Techniques using Visual Computing supported
Materials Analysis

The computationally supported study of materials is based on digi-
tal data extracted from the materials of interest. This process of data
generation is also referred to as materials testing, which is subdi-
vided in two major categories: destructive (DT) and non-destructive
testing (NDT). Destructive methods, as the name indicates, destroy
or modify the specimen, its structure or features of interest during
the testing procedure for gaining insight into the material as well
as to extract its properties. For a number of reasons, such as eco-
nomic issues, functional or manufacturing issues, especially non-
destructive techniques became increasingly important in materials
science. Whereas the larger body of work in materials testing is
currently found in the domain of non-destructive testing also de-
structive testing techniques are prevalent in materials sciences. The
techniques explained in the following sections are highly depen-
dent on visualization and visual analysis for data evaluation, which
is the reason why we put our focus on these methods. Aside the
techniques themselves we give an overview of the data generated
and derived. Most of these techniques are explained on a sample
as introduced by Amenabar et al. [AMLA∗11], which is shown in
Figure 3a. In their work they performed a comparison between ac-
tive thermography, ultrasonic testing, XCT and Shearography for
the inspection of delamination in wind turbine blades, which gives
an intuitive example for each method regarding the generated data
as well as typically used visualization techniques.

3D X-ray Computed Tomography (XCT) originated from
medical applications and was adopted for NDT because of its abil-
ity to describe both inner and outer structures in detail, in a short
time and without destroying the sample. The principle of XCT is
based around 3 main components: the X-ray source, the detector
and the rotary plate where the sample is placed on. For an XCT
scan, a series of 2D penetration images is taken from the sample,
recording individual attenuation images from different angles typi-
cally along a 360 degree circular trajectory. Visual computing was
a key factor for the success of XCT in industrial applications. By
means of reconstruction algorithms, 3D volumetric images contain-

ing scalars encoding the spatial attenuation are computed and ren-
dered from the recorded series of 2D penetration images. Using
grating based phase contrast XCT even multichannel data is gener-
ated, integrating scalars on attenuation, phase contrast and darkfield
information at each spatial position of the reconstructed area. Slic-
ing techniques facilitate detailed analyses of the generated data and
rendering algorithms allow to visualize the 3D datasets. While most
manufacturers of industrial XCT systems deliver their devices to-
gether with standard reconstruction and simple visualization tools,
the fields of computational reconstruction as well as visual analysis
of industrial XCT data is a highly active area of research. The plain
3D attenuation XCT data is used as basis to derive further informa-
tion such as isolines and surfaces, complex data regarding features
as well as their quantified properties, vector and tensor data in stress
and strain fields, or even the dimensionality is increased to also en-
code time in the analysis of dynamic processes. Starting with the
simulation of XCT scans for novel components and materials re-
garding the setup and the optimization of the scanning protocol as
presented by Reiter et al. [RHS∗11], or the optimization of XCT
scan positions as presented by Amirkhanov et al. [AHRG10], vi-
sual computing already supports in advanced scan planning. For
reducing artifacts due to strongly changing penetration lengths or
attenuation coefficients during an XCT scan, Amirkhanov et al.
[AHR∗11] introduced a method, which accounts for the different
materials present, reconstructs them individually, and fuses them to
the final dataset. The major part of work about visual computing in
XCT centers around the visualization and visual analysis for non-
destructive testing or metrology applications. Regarding non de-
structive testing, for example the aeronautics industry requires tools
for robust extraction of pores in fiber reinforced composite struc-
tures as presented by Heinzl et al. [HWR∗14]. For metrology pur-
poses surface models are typically extracted from the XCT data in
order to compare the geometry of a specimen with its CAD model.
Earlier approaches as presented by Heinzl et al. [HKKG06] focus
on the extraction and comparison of surface models to CAD. More
recent approaches, e.g., as presented by Flessner et al. [FMHH14]
evaluate and visualize the quality of surface models determined
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(a) Optical Coherence Tomography (b) Scanning Electron Microscopy (c) Terahertz Testing

Figure 4: (a) Optical Coherence Tomography: OCT image of a silicon carbide. For the 3D representation, multiple OCT scans have been
performed, each 10 µm deeper than the one before. Color encodes the strength of the backscattered signal from red (strong) to blue (weak
signal). At z-values close to 0 the scattering is extreme due to the transition from air to material. Inside the material two scatterings are
observed representing defects: The thin line normal to the surface and the big spot in the bottom right corner. c©1998 Optical Society of
America. Reprinted, with permission, from [DBR98]. (b) Scanning Electron Microscopy: SEM image of a surface membrane exposed to
a fouling process after 3 and after 7 hours. After 7 hours the complete membrane is covered with calcium carbonate. Even with higher
resolution no empty spots are found. Reprinted from [SLKL02], with permission from Elsevier. (c) Terahertz Testing: THz imaging of a
plastic specimen with drilled holes. (a) shows a photography of the sample. (b) shows the corresponding THz image. The drilled wholes are
clearly visible using THz imaging. c©2010 Optical Society of America. Reprinted, with permission, from [JWP∗10].

from computed tomography volume data. Figure 3b shows an ex-
ample of XCT data by Amenabar et al. [AMLA∗11].

Ultrasonic Testing (UT) utilizes sound waves of short wave-
length with a high frequency to test the wave propagation within the
specimens under investigation. The wave propagation through the
specimen varies depending on the material as well as through in-
terfaces and gaps in the material. Often, the specimen is immersed
in water or other liquids to improve the coupling of the ultrasonic
wave with the specimen, especially when the specimen’s surface
is rough, and to provide a uniform contact with the specimen. In
the field of non destructive testing, 2D ultrasonic techniques are
state of the art, generating 2D scalar data representations encoding
amplitude, brightness and other modes of the propagation of the
ultrasonic waves in the specimen. While XCT for the acquisition
of 3D data has been quickly adopted in non-destructive testing, 3D
ultrasonic testing shows less momentum in materials science and
only a few papers exist, which utilize ultrasonic wave propagation
data for 3D visualization. For 3D ultrasonic testing a matrix array
probe is used to scan specimens volumetrically using rotational or
fan scan patterns. Sun et al. [SGW∗14] indicated that visual anal-
ysis of 3D UT data dramatically speeds up the data analysis as the
practitioners do not have to investigate the two-dimensional im-
ages frame by frame. An overview of how to generate 3D data
from phased array ultrasonic testing techniques was presented by
Kitazawa et al. [KKB∗09]. An example of UT data is given in Fig-
ure 3c which is again taken from Amenabar et al. [AMLA∗11].
Here, the C-scan (specific UT mode aside A(amplitude)-mode and
B(brightness)-mode and others, which is formed in a plane normal
to a B-mode image) of the back reflected intensity was taken, as it
allows to nicely reveal the defects in the specimen.

Thermography (IR) denotes a family of different methods,
which utilize thermal energy to digitize a specimen for gaining non
destructive testing data. In terms of the measurement principle, the
specimen is heated either from the outside through a heat lamp or
a flash, or heat is generated inside the specimen through mechan-
ical deformation of the specimen for active thermography. In con-
trast, in passive thermography no heat is induced and the specimen

is scanned in its current condition. Passive thermography is, e.g.,
used to test a specimen under stress in production environment.
To analyze the thermal response, typically the infrared emission is
used (infrared thermography). This infrared emission is usually en-
coded in 2D scalar grey scale images or using color maps encoding
the thermal response. In 3D, the infrared emission data may also
be visualized on the surface of the specimen as well as in subsur-
face regions as presented by Maldague and Marinetti [MM96]. An
example image of an investigation using thermography is shown
in Figure 3d as presented by Amenabar et al. [AMLA∗11]: The
thermography of the specimen in Figure 3a was taken using trans-
missive, pulsed thermography and all five different defects could
be detected. As outlined by the authors, no temperature differences
between the different defect types could be observed as clues re-
garding their thickness and depth. Therefore, the different depths
and thicknesses of the defects could not be distinguished.

Optical Coherence Tomography (OCT) utilizes light to pro-
vide cross-sectional tomographic images of the microstructures of
materials under test. Just as echography does with sound, an OCT
system measures backscattered and backreflected light to distin-
guish between different layers and structures in the specimen. The
utilization of light improves the resolution compared to echogra-
phy by 10-100 times but reduces the penetration depth down to 1

10 .
OCTs main application area is found in biomedical imaging. De-
spite the aforementioned limitations and because it is a real-time
high-resolution and non-destructive technique, OCT has also been
utilized in materials science in recent years. Currently, there are two
main sub-techniques: Time-domain OCT (TDOCT) and Fourier-
domain OCT (FDOCT). For material investigation FDOCT is the
more suited due to its improved detection capabilities as stated by
Placet et al. [PMF∗14]. For rendering OCT images, typically color
coded 2D images are used and encode the strength of the backscat-
tered signal. An example for OCT data is provided by Duncan et
al. [DBR98] in Figure 4a where subsurface samples were taken in
intervals of 10 µm to a depth of 140 µm and combined to produce
a 3D visualization.
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Scanning Electron Microscopy (SEM) uses an electron beam
to scan the surface of a specimen in a specific pattern and in or-
der to image the signals of the electrons hitting the specimens sur-
face. SEM generates 2D scalar data, which are often colored to
focus on features of interest. The data generated in the different
types of SEMs may encode the signals on secondary electrons,
reflected or back-scattered electrons, photons of characteristic X-
rays or light (cathodoluminescence), absorbed current (specimen
current) and transmitted electrons. SEM thus facilitates also a char-
acterization regarding the chemical decomposition of the analyzed
materials aside the structural analysis, so the surface morphology
and the chemical properties of a specimen can be derived in detail.
To further increase the resolution of the images and therefore to
gain a better insight into the specimen of interest, transmission elec-
tron microscopy (TEM) is increasingly used as stated by Bender et
al. [BDM∗10]. Sanderson et al. [SLKL02] use SEM to investigate
2D plus time data on the fouling and cleaning process of mem-
branes during filtration. They further correlate ultrasonic time do-
main reflectometry analysis with the fouling layer of a membrane.
Figure 4b shows images gathered with SEM at different scales and
different states of fouling. SEM is also used together with vari-
ous material removal techniques such as micro-grinding, chemical
etching, or focused ion beam (FIB), in order to destructively inves-
tigate a material of interest in 3D. For example in combination with
chemical etching, SEM is utilized to generate complete 3D images
of the specimen as described by Lanzagorta et al. [LKS∗98]. Us-
ing these material removal techniques the sample is destroyed with
the primary target to remove thin layers of the material and image
the revealed cross section using SEM again in order to finally get a
3D representation of the specimen. In addition, also photogramet-
ric methods are used in order to generate 3D representations of the
surface of the specimen using a low number of images which show
the specimens slightly tilted.

Terahertz Testing (THz) aside its prominent applications in air-
port security, THz is less known to be used in materials science.
THz in 3D mainly covers the data acquisition using continuous-
wave terahertz computed tomography in materials science. This
technique has emerged because of its useful property to facilitate
imaging of transparent objects. For several techniques such as 3D-
XCT it is difficult to test samples with low attenuation inner struc-
tures, e.g. the inner structure of transparent materials as plastics,
wood or paper, which is due to an increased noise level, prevent-
ing from robust analyses of the features of interest. Terahertz test-
ing overcomes these limitations because of the low absorption and
large penetration depths of the transmitted THz waves, which al-
lows to increase the local contrast. This highly desirable property
opens new ways for visual material analysis as well as new chal-
lenges for visualization as stated by Balacey et al. [BRP∗16]. An
example provided by Jansen et al. [JWP∗10] evaluates drilled holes
in a plastic samples (see Figure 4c). Regarding data, THz testing
generates spectral data as well as scalar data, e.g., encoding inter-
vals in the frequency domain.

Apart from the aforementioned methods for the analysis of ma-
terial systems, for sure many other destructive and non destructive
techniques are existing, which are actively used in materials sci-
ence. For example, hyperspectral imaging is used for inspecting
artifacts from geology and cultural heritage. To discuss all remain-

ing techniques in detail would go beyond the scope of this paper.
As the contributions using other techniques play a minor role in
materials science or they are on the border to other research areas
such as geology, or they currently make very limited or no use of
visual computing supported materials study according to our find-
ings, these techniques are considered as out of scope for this paper
and therefore not discussed any further.

4.6. Data Types

An important categorization for visual computing in materials sci-
ence is the characteristics of the input, output and derived data.
Regarding the categorization we adapted the types as defined by
Schneiderman [Shn96] for our domain. A similar categorization
can also be found in Munzner’s book “Visual Analysis and De-
sign” [Mun14]. As 1-dimensional data is typically used for extract-
ing quantitative derived data, e.g., the overall porosity or properties
of a feature in the volume, for visual computing 1D data is there-
fore not extensively used and thus left out in the following consid-
eration.

2-dimensional data types are represented by 2D spatial im-
ages of testing results in many papers, e.g., in Malzbender et al.
[MSM13], who use 2D images of ceramic materials to investigate
crack propagation, Galvin et al. [GGB01], who image and investi-
gate surface strain of glass surfaces at a nanometer scale, or Tanaka
et al. [TKH13] who analyze the behavior of hydrogen diffusion and
desorption in duplex stainless steel and Fe-30% Ni alloys with visu-
alizations of grain boundary diffusion. 2D data representations are
also used as simulation results, e.g., encoding pressure in a glass
pressing simulation [LTM01].

3-dimensional data is one of the mostly used data types in the
visual computing supported materials science literature. The reason
is found in the 3D nature of the specimens as well as their features.
3D data types are often derived and reconstructed from many 2D
images. Placet et al. [PMF∗14] for example applied multiple meth-
ods such as optical coherence tomography and focused ion beam to
reconstruct 3D data. Focused ion beam together with scanning elec-
tron microscopy were used by Bender et al. [BDM∗10] investigat-
ing milling strategies for the structural characterization of through
silicon vias. In the work of Weber et al. [WRR∗11], 3D reconstruc-
tions of synchrotron-based X-ray tomography data were used to
investigate micropowder injection molding in order to optimize the
molding process for achieving high dimensional accuracy. For ul-
trasonic testing Kitazawa et al. [KKB∗09] proposed a method to
gather 3D data from the specimen which based on phased array
ultrasonic testing.

Temporal data allows to get an insight into ongoing processes
of materials science. This time component may be very discrete,
as it is the case in of Patterson et al. [PCH∗15] work, where syn-
chrotron X-ray tomographic imaging is used during the compres-
sion of polymeric materials. Their goal is to analyze the mechani-
cal properties of materials, which are important for predicting life-
time performance, damage path-ways and stress recovery. Due to
required relaxing phase of the material for up to 10 minutes, which
is necessary as the residual motion of the material would blur the
images, the data over time is highly discrete. In contrast to this ex-
ample the data may also be continuous, which allows an interactive
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real-time visualization of a simulation as presented by Laevsky et
al. [LTM01]. They use a tool, that operates on data streams which
are directly visualized. These data streams are fed in a fluid simu-
lation to optimize the process of glass pressing. Data is of course
still discrete as it is processed by a computer, but the notion of con-
tinuity comes from the fact, that it is visualize-able in real-time.

Multi-dimensional data in materials science often comes
through the investigation of material properties from data generated
using more than one testing method or by deriving additional data.
Multi-dimensional data is used both in terms of material analysis
or in simulations, where many different properties are computed.
Ota et al. [OKTM05] are using 3D-XCT to measure flows induced
by shock waves in tubes for computational fluid dynamics. They
extract quantities such as velocity, density, pressure and tempera-
ture in order to investigate the flow in the underlying materials. An
example for derived data can be found in the work of Bhimavarapu
et al. [BMBN10], where stress, strain, strain rate and temperature
are obtained, combined and derived by various testing techniques
for the for the investigation of alloys.

Trees and tree structures are at the moment rarely used for solv-
ing problems in materials science applications. Whereas simulation
tools are frequently using trees to setup the scenery of the spatial
domain, we encountered only a single usage of trees in the area
of analyzing segmentation ensembles. Fröhler et al. [FMH16] are
using trees as basis for clustering and navigating through similar
segmentation masks. The tree in their application helps to struc-
ture the segmented datasets and to stepwise explore deeper layers
of similar segmentation masks.

Networks inside materials are often of interest as means of ab-
straction for complex linked features (e.g., open pore networks) or
as rendering in the spatial domain (e.g., closed foam networks).
Due to the intrinsic nature of the specimens, those the networks
influence the specimen’s mechanical characteristics. Networks are
typically not explicitly given but need to be derived via visual com-
puting methods. Ushizima et al. [UMW∗12] uses synchrotron X-
ray computed microtomography as well as geometric and topologi-
cal descriptors to derive pore networks and pore microstructures for
estimating the permeability of porous media. In their work pore net-
works are represented by a graph, in which edges define the possi-
ble flow inside the material. These edges are assigned with a weight
and augmented with their connectivity to the top of the stack, so
that no flow is present in dead-end edges. Rey et al. [RMF07] repre-
sents a new node-nested Galerkin multigrid method for metal forg-
ing simulations. This method operates on 3D meshes, which are
represented as networks, where nodes define the points in space
and are assigned with properties such as pressure or velocity. The
edges of the graph are used to define how the points of the network
are spatially connected. The relationship of the nodes in space is of
interest as the individual nodes can interact better with each other
and overall material properties can be defined.

4.7. Visual Representations in Visual Computing supported
Materials Analysis

In this section, we describe our findings concerning visualization
techniques and visual metaphors used in the domain of visual com-
puting for materials science. With regard to the tasks as discussed

Figure 5: Visualization of nanosphere atom rings in simulated
graphite nanosphere battery materials showing blocking and non-
blocking patches. Motion of lithium is controlled by the arrange-
ment of carbon rings: while 6-member rings block lithium diffusion
(top left: rings with valence of six or less clustered near the ex-
terior), higher valence rings permit it (top right, bottom). c©2016
IEEE. Reprinted, with permission, from [GKLW16].

in section 4.4, as well as the discussion of the data generated
and derived, we subdivide the visualization techniques and visual
metaphors in the following categories with respect to the domain,
their respective analysis task is targeted on:

Visual Representations for Spatial Data are inherently bound
to nature of the spatial domain the specimens of interest exist in.
Many of such visualization and visual analysis techniques are thus
found in the areas of simulating material systems as well as mate-
rial analysis. Gyulassy et al. [GKLW16] use spatial visualizations
of large-scale molecular dynamic simulations for evaluating simu-
lated graphite nanosphere battery materials. The authors study the
diffusion characteristics of (lithium) ions or other diffusers by em-
ploying a topological analysis of the distance function of carbon
rings, and construct explicit triangulations to represent the carbon
rings in the material. The carbon rings are classified as blocking or
non-blocking and visualized using color coding (see Figure 5). The
blue patches are part of rings with a valance of six or less, which are
blocking the diffusion, while all the other patches are of rings with
valance between seven and ten permitting diffusion. These patches
are clustered along the exterior or along the principal axes. This al-
lows to focus on the defects and to derive scientific findings such as,
defect rings are occurring in neighbourhood of other defect rings,
as there are many large components of defect patches. Further ap-
plications of simulation in combination with spatial data is found
in the estimation of the permeability of porous media as presented
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by Ushizma et al. [UMW∗12] who provided augmented topolog-
ical descriptors for analyzing pore networks. They presented 3D
visualization techniques for analyzing pockets and extracting flow
graphs in simulated and real world datasets of materials science.
Malik et al. [MHG09] utilize techniques adapted from 2D graph-
ical representations such as box-plots and transfer them to the 3D
domain, e.g., as overlays over a spatial visualization or in a magic
lense showing regions of interest. This concept yields the visualiza-
tion of quantitative data to compare datasets, in their case a CAD
model of the specimen with a volumetric dataset scanned by 3D-
XCT. Overlays of boxplots can be used to compare data sets visu-
ally and to provide a fast overview. The main purpose of this tech-
nique is thus found in variance comparison as well as in monitoring
production tolerances. Such tools are not only used in comparative
visualization, but also for the investigation of the deterioration risk
of mural paintings. Li et al. [LZS16] use an overlay technique based
on glyphs for risk analysis of ancient frescoes. The glyphs are used
to visualize the risk type, risk area size, the position and orienta-
tion of the risk area. The generated panorama view of the object,
for which the corresponding risks should be determined, help the
domain specialists to semi-automatically get a comprehensive view
of the object. Furthermore, Wu et al. [WT10] are using overlays to
visualize the simulated curvature flow (planar geometric heat flow)
in materials science applications on a triangulated surface of a pla-
nar geometric object. The specific application areas mentioned in
this work are found in physical simulations and materials science,
where the flow plays an important role for the topology-adaptive
front propagation with a curvature-dependent speed. As seen in the
previous approaches, often additional information in spatial visual-
ization is color encoded on the features of interest. Allerstorfer et
al. [AHKG10] use transfer function based color-coding and opacity
mapping to visualize the uncertainty of surfaces and interfaces of
materials scanned with 3D-XCT data. More uncertain regions are
rendered more transparently. They also apply color coded isolines
as an overlay to visualize uncertainty inside the specimen. Labeling
in hyperspectral imagery to distinguish between different materials
in 3D is presented by Kim et al. [KHK∗12]. Hyperspectral imaging
is used for inspecting artifacts from geology and cultural heritage.
The data is visualized in three dimensions labeling different materi-
als with different spectra and therefore different properties. Such an
encoding easily allows the investigation of the material’s distribu-
tion in a specimen. Function plots such as power dissipation maps
and instability maps are used by Bhimavarapu et al. [BMBN10] for
the Al 2024 alloy, in order to encode the efficiency and the instabil-
ity in 3D space of temperature, as well as the strain rate and strain
in process maps. With this type of visualization the complete de-
formation behavior of a specimen can be visualized at once as the
relation between a varying strain and the efficiency or the instability
is shown. Takatsubo et al. [TWM∗08] uses laser ultrasonic testing
for visualizing the propagation of ultrasonic waves on a 3D speci-
men in order to gain insight into defects as well as their position: If
scattering of the waves is observed, some irregularity is contained
in the specimen. An experienced practitioner gains the required in-
formation on the defect from the wave propagation images. To sup-
port the visual inspection, post-processing is often applied to these
images. For example, a maximum amplitude image is generated to
view slits in a specimen. Such techniques are especially useful, if
the testing method only supplies 2D images of a 3D object in order

Figure 6: Particle movement visualized as continuous path lines il-
lustrating the structure of the flow of the Arnold-Beltrami-Childress
moloecular dynamics dataset. Particle sites move smoothly over
time as rendered in the path lines. c©2011 IEEE. Reprinted, with
permission, from [FSG∗11].

to form a 3D mental model of the specimen, e.g. 2D visualizations
of surfaces which are not smooth or planar.

Visual Representations for Spatiotemporal Data target to ex-
plore the temporal domain in the context of spatial data. Spatiotem-
poral data analysis in materials science is catching increasingly at-
tention as the respective methods for data acquisition and process-
ing allow for comprehensive studies gaining new, previously im-
possible insights. In the domain of simulation, visualization tech-
niques are used to show the change of material systems in use
within their target application. Earlier approaches as presented by
Leavsky et al. [LTM01] are interactively visualizing deformation
simulations. The primary target is to visualize the deformation of
glass over time under the effect of heat in order to optimize glass
pressing. The visual metaphors used are found in 3D animations
showing the change of form of the glass materials as well as 2D
animations encoding the glass velocity magnitude and the pressure
in a slice of interest. In the work of Frey et al. [FSG∗11] com-
plex particle simulations are visualized by clustering in Voronoi
diagrams. They reduce the visual clutter of a huge amount of simu-
lated particles, keeping the information of particle distribution and
geometric structure. To visualize the change over time for the parti-
cles, the authors use animations and visualize calculated path lines
for small subsets of particles (see Figure 6). Besides lower memory
consumption and less visual clutter, this approach improves render-
ing performance and allows for a more comprehensive view of the
simulation. Spatiotemporal data visualization also integrates anal-
yses of dynamic processes, i.e., ongoing processes, which are eval-
uated over time, under load or under changing environmental con-
ditions. In order to analyze these kind of dynamic processes using
(interrupted) insitu testing, most of approaches are using spatiotem-
poral data (i.e., 2D or 3D spatial image data plus time as additional
dimension). An approach exploring dynamic heating/cooling pro-
cesses of metal composites as well as drying processes of wood was
presented by Reh et al. [RAK∗15]. The authors introduced Fuzzy
Tracking Graphs, which allow to follow the creation, continuation,
split, merge and dissipation of features in a graph based represen-
tation as they evolve during the ongoing process. In an Event Ex-
plorer the extracted features of each step of the (interrupted) in-
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situ test may be further investigated regarding the individual fea-
ture properties at a timestep of interest. Another example for 2D
porosity investigation was developed by Tran et al. [TDD∗12]. In
their work, the mechanical properties of wood fiber networks are
investigated using loading tests and XCT imaging in order to vi-
sualize strain over time. Using heat maps visualizing the normal-
ized strain field, they superimpose additional information on 2D
slice images, showing the local thickness of pores in the wood net-
work, in order visually inspect the mechanical behavior and the
correlations between the presence of wood, the porosity of wood,
as well as strain. Further approaches generate lists of 3D spatial
visualizations at key events. Key events may denote the introduc-
tion of cracks in the specimen, a maximum deformation or just
at some given points in time to gain an insight into the process.
Patterson et al. [PCH∗15] visualize and investigate cellular mate-
rials under strain with in-situ X-ray synchroton tomography to get
the mechanical properties of the material, which are important for
predicting lifetime performance, damage path-ways and stress re-
covery. In order to explore the damage mechanisms in composite
materials such as glass fiber reinforced polymers under increasing
load Amirkhanov et al. [AAS∗16] presented a tool for the analy-
sis of 4D-XCT data. Aside the extraction and classification of the
corresponding defects in each step of the insitu test into matrix frac-
tures, fiber/matrix debondings, fiber pull-outs, and fiber fractures,
various exploration techniques are proposed to highlight the defect
regions in context of the XCT data. For example, Defect Density
Maps serve as overview of the defect distributions in 2D and 3D as
well as for visualizing the final fracture region, which is not explic-
itly given but more an estimation based on the extracted defects in
the region. Another technique presented by Malik et al. [MHG10]
allows to study the evolution of ongoing processes as well as en-
sembles of XCT data for performing parameter studies using com-
parative visualization techniques. Extending the idea of the checker
board visualization, rendering the first dataset on the black tiles and
the second dataset on white tiles, the authors propose space filling
hexagons as basis for their 2D multi image view. The hexagons
show a circle in the middle encoding the reference dataset. Around
this circle the hexagon is divided into multiple sectors, showing
all other datasets in comparison. For the comparison, the encoding
may be switched from greyscale images (original data), to differ-
ences in greyvalues encoded in color, to homogeneity of the con-
sidered region as binary image. In microscopy it is often required to
view the microstructure of a surface from slightly different perspec-
tives. Since microscopes produce only orthographic images sev-
eral additional steps are needed to get perspective images. Levoy et
al. [LNA∗06] propose a method to achieve this goal. By inserting
an array of microlenses into the train of a common microscope, so
that they can capture light fields, a perspective visualization may
be computed in real-time. The gathered data can also be used to
compute images with varying focus, so that the microstructure of
the surface may be investigated in detail.

Visual Representations for Quantitative and Derived Data
are required to provide additional insights into data, which may not
be obvious in the spatial or spatialtemporal domain only. Methods
in this area cover a large number of domains ranging from fea-
ture quantification, geometrical tolerancing, to network analyses.
Therefore, examples for this category can be found both in ma-

terial simulation and material analysis. In the domain of material
simulation Zobel et al. [ZSS15] propose a tool for domain spe-
cialists to verify, if and where the design of a new fiber reinforced
polymer component might fail in order to improve it in additional
design loops. The authors are using feature based tensor visualiza-
tion to evaluate simulations of respective fiber reinforced polymer
samples for virtual prototyping. Their tool presents simple and ef-
ficient overviews of the stress and strain in the complete object and
introduces a new type of glyph encoding the desired fiber direc-
tions and the fiber orientation tensor. These glyphs are based on
superquadrics encoding the orientations of the fibers. Furthermore,
the tool indicates if the fiber orientation may cause failures using
colors. Finally, the admissible fiber directions at specific regions of
the specimen may be shown in the data. Quantitative data analysis
of features in materials are of increasing interest. A tool facilitating
the quantitative analysis of fibers in XCT scans of fiber reinforced
materials was presented by Weissenböck et al. [WAL∗14]. After
extracting quantitative information on the fibers (e.g., length, ori-
entation, start and endpoint) the authors are using parallel coordi-
nates as well as a scatter plot matrix for the exploring and clustering
fibers based on their characteristics. In order to ensure the maximal
possible flexibility in terms of exploration and visual analysis, all
views are linked with each other as well as with the representation
in the spatial domain. Fritz et al. [FHG∗09] and Westenberger et al.
[WEL12] also evaluated fibers in XCT scans of fiber reinforced ma-
terials. After extracting each fiber and quantifying the fibers regard-
ing their orientation in space, these approaches are using a sphere
or a hemisphere as visual metaphor to encode fiber orientation dis-
tributions of fiber reinforced materials: The sphere/hemisphere al-
lows the mapping of the orientations of the straight fibers as angles
on the sphere/hemisphere. Exploiting symmetry of the orientations
facilitates the simplification of the visualization from a sphere to a
hemisphere, which is then azimuthal projected on a 2D plane. This
is a demonstrative and innovative visualization for fiber orientation
distributions as it avoids visual clutter, which direct volume render-
ing of the fibers would introduce. Network visualizations were also
adapted for use in materials science, e.g., for the analysis of rocks
as presented by Grau et al. [GVTA10]. In the spatial domain, it is
often hard to determine, which nodes are near and which are far
to the viewer. To solve these problems, a size may be assigned to
the knots to render them smaller if they are far away. This is not
always possible, as the knots are typically extended with derived
properties such as pore volume etc. of the material. To solve this
issue, color-coding with a legend is used to encode depth. Color-
coding of the nodes can also be used to provide information about
the distances removed, e.g., from a selected node, or to visualize
which nodes are connected to a node. The authors use their network
visualization technique to solve domain specific tasks such as find-
ing the shortest path between two pores (see Figure 7). In the left
image out-of-scope pores are ghosting. In the middle image these
pores are cut away and the maximum distance is longer. In the right
picture an opacity attenuation in relation to the distance is used.
This also allows simulation of fluid extrusions or intrusions through
the structure and therefore the visualization has an additional ben-
efit. Another example of the utilization of network visualizations is
given by Gyulassy et al. [GDN∗07] regarding the simulation and
visualization of porous solids hit by a projectile. Graph based visu-
alization techniques are used by Reh et al. [RAK∗15]. The authors
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Figure 7: Analysis of pore connectivity inside a rock. Left image:
Selection of pores with distance 9, pores out of focus are ghosting.
Middle image: Pores with a longer maximum distance, removing
out of focus pores. Right image: Opacity of the pores encodes the
distance from the selected cluster. Reprinted from [GVTA10], with
permission from Elsevier.

introduced Fuzzy Tracking Graphs visualize the evolution of fea-
tures and corresponding events over time. This representative ex-
ample of how complex processes can be simplified using 2D visu-
alization techniques ensures a fast and comprehensive visual anal-
ysis for practitioners. Wireframe visualizations are used by Wang
et al. [WNG06] in order to derive and visualize cloud-like struc-
tures, such as plasmapauses (boundary of a plasmasphere), from
large image data, which are in motion and deforming governed by
magnetic field properties. Aside being cheap to render, wireframes
as visual metaphor allow to intuitively follow the structure in mo-
tion, which is only reasonable if a perspective rendering is used
or if front- and backfaces are easily discernible. In addition, also
the 3D visualization of derived functions are important in materi-
als science: Data aggregations are used by Reh et al. [RGK∗13] for
computing MObjects, which are introduced as the mean object of a
large number of features of interest such as pores, cracks, particles,
voids or fibers in the data. The authors compute these mean objects
in order to integrate them as precise average structures for finite el-
ement simulation purposes. Their approach is to first segment the
features of interest, align them according to their center of gravity,
aggregate all pore voxels and normalize all voxels in the created
mean object to 1. The normalization to 1 allows for an interpreta-
tion the mean object’s data as the voxels’ probability of belonging
to the mean object, which the authors denote as uncertainty cloud
(see Figure 1).

For quantitative visualization also simpler 2D visualization tech-
niques such as charts, plots, scatterplots, histograms etc., are widely
used in materials science used for understanding complex data. As
a large number of papers is building on these simpler visualization
techniques, we only indicate the following examples: Bhimavarapu
et al. [BMBN10] in their approach analyzing the compressive de-
formation behavior of the Al 2024 alloy are using function plots
with level lines to visualize extracted strain rates and flow strain
in relation. Froehler et al. [FMH16] use histograms as supportive
techniques to explore the frequency of the parameters and derived
outputs used in segmentation pipelines in materials science. As the
histograms are linked to filter sliders, a quick exploration of the
data will be facilitated.

4.8. Interaction Techniques

As a result of the increasing complexity of data in materials science
as well as the growing demands regarding their analysis, especially
passive visualizations techniques have reached their limits. For that
reason interactive visualization methods are increasingly utilized to
support the visual analysis process in materials sciences. For sev-
eral challenges, even interactive steering is employed to influence
the data generation process. We thus reviewed and analyzed the in-
teraction techniques used in visual computing supported materials
science and present our results in the following sections. Regard-
ing the categorization of the interaction techniques we first used the
categorization as proposed Yi et al. [YaKSJ07]. When coding the
interaction techniques from our set of relevant literature, it turned
out that this categorization was in some terms is too coarse and
in others too fine grained for visual computing in materials sci-
ence. As consequence, we focus in our review on those interaction
techniques, which are highly relevant in visual computing based
materials science and combine the proposed categories from Yi et
al. [YaKSJ07] with those described by Kosara et al. [KHG03]:

Explore and Reconfigure addresses the three basic interaction
techniques of translating, rotating and zooming into data, which
are used in materials science for spatial, spatiotemporal and quan-
titative and derived data visual analysis approaches as well as in-
teractive steering. All three basic interaction techniques fit in the
category ’Explore’ as defined in Yi’s classification while Translate
and rotate may also be categorized as ’Reconfigure’. ’Zoom’, espe-
cially a semantic zoom, fits in the category of ’Abstract/Elaborate’.
Despite the different approaches regarding categorization, the three
basic interaction techniques of translate, rotate and zoom are fre-
quently used in visualization systems. Especially, in the exploration
and analysis of spatial data, these interaction techniques often ap-
pear in literature of visual computing supported materials science
as they are easy to implement but provide huge benefits in data
exploration. For example, Zobel et al. [ZSS15] use translation, ro-
tation and zoom in order to explore, if and where the design of a
new fiber reinforced polymer component might fail.

Linking and Brushing is using multiple views showing differ-
ent aspects of the same data, which are connected (linked with each
other) in order to interactively manipulate them all together. The
term brushing refers to the categories ’Select’ and ’Filter’ and the
term linking to the category ’Connect’ from Yi’s classification. Ei-
ther in a single view or in all views, items may be selected, rotated,
translated, zoomed, filtered by text, using sliders or other ways. As
all views are linked, all views will be updated automatically once
a change occurred in one of the views in order to show the se-
lected data in context. In their Porosity Analyzer tool for the evalu-
ation of the segmentation pipelines Weissenböck et al. [WAG∗16]
combined scatterplot matrices encoding the characteristics of pores
with 3D spatial views of the data. With the scatter plot matrix, the
masks as generated by the corresponding segmentation pipelines
are evaluated regarding their input and output parameters. Results
of individual segmentation-pipeline runs are selected by brushing
in the corresponding scatter plot and linked to 2D slice views and
3D renderings of aggregated segmentation masks and statistical
contour renderings. Qian et al. [QSCZ16] use linking and brush-
ing to support conservators and site managers in the deterioration
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risk assessment of cultural heritage. Their approach allows brush-
ing of exogenous factors such as humidity, light, or wind, as well as
endogenous factors which cause deterioration. The brushed charac-
teristics are displayed with linked box plots, scatter plots and other
charts in order to provide an overview graph for decision making
in a visual analysis process.

Focus Plus Context as defined in Kosara’s classification helps to
visualize large data sets, which cannot be displayed or rendered at
once and as a whole. In a visualization system using focus plus con-
text, the users select a subset of data and put the focus on the anal-
ysis on this subset. The subset is then displayed in more detail and
providing additional visual metaphors, e.g., rendering derived data.
As context information, the complete data set is typically provided
out of focus, e.g., abstracting or reducing details. There are differ-
ent methods to achieve this effect. For example, the data around the
focus can be geometrically distorted. Li et al. [LZS16] uses focus
plus context to provide users with details (focus) and an overview
as a heat map (context) describing the spatial distribution of the
overall disruption risk for the deterioration risk assessment of an-
cient frescoes. Various applications of this technique are seen in
the method of Grau et al. [GVTA10] supporting the exploration of
porous structures using illustrative visualization. In their proposed
graph based visualization of porous media, the user can select indi-
vidual pores by clicking or within a given radius, as well as pores
not reachable from the outside, at the boundary or the surface of a
given model. This selection defines the focus. All other pores and
the solid around those pores are rendered as context information. In
their application the selected pores are rendered opaque and high-
lighted with color, while context pores as well as the solid material
are rendered using a ghosting effect. To overcome the problem that
context pores and solid overlap focus pores, they use in addition
a cut-away technique for interfering pores and solid areas, which
allows full focus but reduces the context in the viewing direction.

Filter is defined in both Yi’s classification Kosara’s classifica-
tion and describes the process of searching in a data set in order to
reduce the displayed data. This can be achieved via free text forms,
in cases of textual or derived data sets. Another approach makes use
of sliders to find all values, which feature a property of a specific
range. In the workflow introduced by Fritz et al. [FHG∗09] the user
can filter fibers of a fiber reinforced material by their angles and
other characteristics. This way, only fibers within the filter range
are visible for the evaluation. Qian et al. [QSCZ16] implemented
filtering as drop-down menues for constraining areas of interest,
endogenous risk factors, and exogenous factors. This filtering tech-
niques can be combined to for refinements, which demonstrates
another option using filters. A combination of multiple filter types
allows for an advanced interactive search facilitating complex and
interactive queries.

Aside these interaction techniques also other techniques are
used in visual computing for materials science such as ’Ab-
stract/Elaborate’ in the form of glyphs as in the method presented
by Zobel et al. [ZSS15] or ’Reconfigure’, as presented by Reh et
al. [RPK∗12] to identify suitable viewing angles. As these interac-
tion techniques play a minor role in the current body of literature,
they are not considered any further in this report.

4.9. Interactive Steering

Interactive steering makes use of visual representations of spatial,
spatiotemporal data as well as from representations of quantitative
and derived data. It also employs the interaction techniques as ex-
plained in Section 4.8. As interactive steering is considered in ma-
terials science to achieve the most benefits for a materials science
problem, we also review this area from the materials science per-
spective: At the moment interactive steering of complex simulation
and analysis techniques is a still a sparsely used method. However,
in the presented approaches it already allows to generate huge ben-
efits in materials science. Interactive Steering adjusts parameters of
the data acquisition process while the acquisition process is still on-
going. It provides means to review intermediate results and uses the
extracted insights in order to steer the data acquisition process us-
ing the results determined. This principle helps to explore complex
phenomenons without the need of computationally expensive de-
termination of the phenomenon’s complete parameter space. Inter-
active steering shows the advantage, that long running simulations
may be corrected and steered if they generate suboptimal results.
The advantages however are overshadowed by the fact, that the cor-
responding data acquisition is costly and thus the interaction may
end up in a tedious process. The tool of Laevsky et al. [LTM01] em-
ploys a visual steering system combining distributed computation
and visualization of glass pressing simulations. The authors provide
a tool enabling users to control the underlying simulation. Interme-
diate visualization results, such as 2D colorcoded renderings of the
pressure in the form, act as a steering and visualisation front-end in
order to derive parameters for a new simulation run. The interaction
with the simulation is facilitated using a graphical network visual-
ization of the dataflow. The corresponding modules in the network
process data streams and represent functions such as the computa-
tion of gradients or the iso-surface extraction. Each module features
its own parameters, which can be manipulated using GUI elements.
The results can be visualized in 2D or 3D animations, in order to al-
low an interactive exploration of the simulation. Another very dif-
ferent approach is presented by Martin et al. [MTGG11] for per-
forming deformation simulations with example-based materials. In
their approach, the user applies pressure and strain on simulations
of flexible materials. For example, a gummy bear is pressed with a
spoon and the deformation may be followed interactively. The ma-
terials are represented using surface models. This allows users to
adapt the underlying material parameters according to the visual-
ized deformation. Despite this work being primarily focused on the
creation of art, the authors also explain secondary applications in
the domain of materials science regarding the design of new mate-
rials. Such techniques may accelerate the creation of new materials
and support material scientists in their daily work.

5. Challenges for Future Work

Though a whole body of work is already found in visual analysis
for materials science, there are much larger challenges to be solved
in future. We combined our findings with the results of a discussion
round on the topic of visual analysis for materials sciences, which
took place between specialists from the domains of visual analysis,
visualization, non destructive testing and materials science at a re-
cent workshop. To solve these challenges, new collaborations and
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projects are strongly encouraged, integrating end users from ma-
terials science, specialists in materials analysis and experts in vi-
sualization and visual analysis, in order to boost visual computing
supported materials science. Our findings are summarized below,
separated into high and low level challenges:

5.1. High Level Challenges

Regarding high level challenges, the tasks to be solved, which are
of imminent need, are found in the following points:

• The Integrated Visual Analysis Challenge was identified as stan-
dard visualization tools are not enough to explore the generated
materials science data in detail. What is required are integrated
visual analysis tools, which are tailored to a specific application
area of interest and which guide users in their investigations. Us-
ing linked views and other interaction concepts these tools are
required to combine all data domains using meaningful and easy
to understand visualization techniques. Especially for the anal-
ysis of dynamic processes, where spatial and temporal data are
evaluated, e.g., when materials are being tested under load or in
different environmental conditions, these kind of tools are highly
anticipated. Only this concept allows to make the most out of all
the data available.

• The Quantitative Data Visualization Challenge centers around
the design and implementation of tailored visual analysis sys-
tems for extracting and analyzing derived data, e.g., as computed
from extracted features over spatial, temporal or even higher
dimensional data domains. Therefore, feature extraction tech-
niques, e.g., for the extraction of flow paths through porous me-
dia, segmentation techniques, e.g., for the extraction of voids in
the data, and even clustering techniques, e.g., for finding inter-
esting feature classes, are required as prerequisites for the tar-
geted visual analysis. As the quantification may easily end up in
25 or more properties, which are computed per feature, cluster-
ing techniques allow to distinguish the features of interest into
feature classes. These feature classes may then be statistically
evaluated in order to visualize the properties of the individual
features as well as the properties of the different classes. Par-
ticularly, techniques from information visualization will be of
interest for solving this challenge.

• The Visual Debugger Challenge is an idea, which uses visual
analysis to remove errors in the parametrization of a simulation
or a data acquisition process, in order to finally improve results.
Similarly to a debugger in computer programming, which tests
and identifies errors in the code and which provides hints to im-
prove the code, a visual debugger in visual computing for mate-
rials science should show the following characteristics: It should
indicate errors and identify wrongly used algorithms in the anal-
ysis. Such a tool should also identify wrongly used and incorrect
parameters, which either show no or very limited benefit or pro-
vide erroneous final results. Furthermore, it should give direc-
tions on how to improve a targeted analysis and suggest suitable
algorithms or pipelines for specific tasks.

• The Interactive Steering Challenge uses visual analysis tools
to steer ongoing simulation or data acquisition systems. In this
challenge, a visual analysis system should monitor a costly pro-
cess and give directions in order to continuously refine its re-
sults. The main goal here is to find a reasonable solution to the

problem of interest. For example, in the material analysis do-
main this could be a system, which provides settings for data
acquisition based on the image quality achieved. If the image
quality no more fulfills the target requirements, the system in-
fluences all degrees of freedom in the data acquisition in order
to enhance image quality again. The same holds for the mate-
rials simulation domain. Visual analysis can help to steer target
material properties in a specific application environment by pre-
dicting tendencies of costly simulation runs, e.g., using cheaper
surrogate models.

5.2. Low Level Challenges

Whereas the previous section focused on specific visual analysis
challenges in materials science, the following points outline more
general challenges of the domain, which will help to drive collabo-
rations as well as research in the respective areas:

• The Common Data Repository Challenge came up in discussions
between the communities of visual analysis, visualization, non
destructive testing as well as materials science, as typically the
generated data is proprietary for specific end users, who do not
want to share corporate secrets with competitors. Therefore, an
archive of disclosed data should be created similar to the “digi-
morph project” (www.digimorph.org), a dynamic archive
on high-resolution XCT data of biological specimens. This ma-
terials science archive should contain spatial data, spatiotempo-
ral data as well as derived data together with descriptions of the
sample as well as the analysis task.

• The Visual Analysis Consulting Challenge is a request of mate-
rial testing and simulation specialists, who would like to provide
their end users in materials science with visual analysis meth-
ods and contacts in order to solve their problems. On their daily
routines, typically they can not do so, as their services end with
providing the data required. Therefore, consulting services, soft-
ware frameworks and methods would be required, which allow
the end users of materials science to make most out of their data.

6. Conclusions

In this work we have presented the state of the art regarding visual
computing for materials science. This is the first concise overview
on the current state of research activities within this emerging field.
After reviewing the definition of materials sciences and material
systems exploiting visual computing, we analyzed the high level
visual computing, visual analysis and visualization tasks for mate-
rials sciences, as well as testing techniques which are providing the
data for the respective analyses. We reviewed the data characteris-
tics as well as visualization techniques and visual metaphors used
as well as the interaction concepts employed. Our review showed
that about the half of all relevant literature still uses mainly pas-
sive visualization techniques. In these approaches of materials sci-
ence using visual computing, simple visualization techniques as the
plain output of the measured raw data or the extraction of a plot, a
histogram, or even a binary value are sufficient to answer a number
of problems in materials science, e.g., whether the material sys-
tem is qualified for a specific application. Interactive visualization
becomes a requirement if the input data dimensionality is or ex-
ceeds 2D. If input data is 3D, interactive techniques are required to
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explore the data in detail. For higher dataset dimensions, e.g., the
exploration of derived values, the used interaction concepts influ-
ence the quality of the data exploration results in materials science.
Interactive visual steering of costly data evaluation or simulation
is required by materials science in the sense of visual debuggers.
These visual debuggers should support domain specialists regard-
ing data acquisition as well as simulation processes. At the mo-
ment, despite returning the maximal benefits, these kind of systems
are rarely seen. We finally concluded our report with the identifi-
cation of open research challenges based in our observation results
in order to guide future research endeavors in this area. We hope
that our work will be the basis to establish further fruitful collabo-
ration across the domains in order to boost research in all materials
science domains as well as in visual analysis and visualization.
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Dynamic Volume Lines: Visual Comparison of 3D Volumes
through Space-filling Curves

Johannes Weissenböck, Bernhard Fröhler, Eduard Gröller, Johann Kastner and Christoph Heinzl
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Fig. 1. Dynamic Volume Lines depicts sets of volumes (a) in an overview visualization, i.e., an interactive nonlinearly scaled histogram
heatmap, which encodes intensity frequencies, or (b) in a detailed view, as interactive nonlinearly scaled 1D Hilbert line plots. Based
on the individual 1D Hilbert line plots, functional boxplots (c) are generated on demand. The scaling widget (d) depicts the ensemble
variation on each level of detail.

Abstract— The comparison of many members of an ensemble is difficult, tedious, and error-prone, which is aggravated by often just
subtle differences. In this paper, we introduce Dynamic Volume Lines for the interactive visual analysis and comparison of sets of 3D
volumes. Each volume is linearized along a Hilbert space-filling curve into a 1D Hilbert line plot, which depicts the intensities over the
Hilbert indices. We present a nonlinear scaling of these 1D Hilbert line plots based on the intensity variations in the ensemble of 3D
volumes, which enables a more effective use of the available screen space. The nonlinear scaling builds the basis for our interactive
visualization techniques. An interactive histogram heatmap of the intensity frequencies serves as overview visualization. When zooming
in, the frequencies are replaced by detailed 1D Hilbert line plots and optional functional boxplots. To focus on important regions of the
volume ensemble, nonlinear scaling is incorporated into the plots. An interactive scaling widget depicts the local ensemble variations.
Our brushing and linking interface reveals, for example, regions with a high ensemble variation by showing the affected voxels in
a 3D spatial view. We show the applicability of our concepts using two case studies on ensembles of 3D volumes resulting from
tomographic reconstruction. In the first case study, we evaluate an artificial specimen from simulated industrial 3D X-ray computed
tomography (XCT). In the second case study, a real-world XCT foam specimen is investigated. Our results show that Dynamic Volume
Lines can identify regions with high local intensity variations, allowing the user to draw conclusions, for example, about the choice of
reconstruction parameters. Furthermore, it is possible to detect ring artifacts in reconstructions volumes.

Index Terms—Ensemble data, comparative visualization, visual analysis, Hilbert curve, nonlinear scaling, X-ray computed tomography

1 INTRODUCTION AND MOTIVATION

Synthetic foams are widely used, for example, as packaging, as thermal
insulating materials, or even as lightweight components [19]. The me-
chanical behavior of foamed polymers is mainly influenced by the foam
density, cell size and diameter, foam hardness, and the deformation rate.
For closed-cell and open-cell foams, the determination of the foam
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module is important. For this purpose, the spatial distribution of the
matrix material in the cell walls must be accurately described [10].

A major challenge in three-dimensional material characterization
with conventional industrial 3D X-ray computed tomography (XCT)
systems are low densities and thin cell walls, especially at low physical
resolutions. One method that overcomes these challenges is Talbot-Lau
grating interferometer XCT (TLGI-XCT) [37]. It is a non-destructive
testing method, which fully delivers 3D volume information of the
scanned specimen at a high resolution to precisely capture external
and internal structures (e.g., cracks) in a single scan. TLGI-XCT is
one of the most important X-ray technology innovations in the past ten
years [28]. This method provides three complementary modalities in
one scan of the specimen: (1) the attenuation contrast (AC), (2) the
differential phase contrast (DPC), and (3) the dark-field contrast (DFC).

Currently, it is common practice to reconstruct the data of the three
modalities separately, without simultaneously using the present and
instructive complementary information. To reconstruct the data from
the three modalities, the conventional filtered back-projection algorithm
by Feldkamp, Davis, and Kress (FDK) is used [6]. This reconstruc-
tion algorithm is well suited for XCT data from the AC modality, as
it is a fast and accurate method. However, for the DPC and DFC
modalities, the FDK reconstruction is not optimal because the prior
knowledge and the inherent physical effects of the different modalities

are not considered [17, 33]. Experts in the field of computed tomog-
raphy reconstruction are therefore developing new algorithms based
on appropriate mathematical models. These correspond to the physical
characteristics of the DFC and DPC modalities in order to achieve
satisfying reconstruction results with regard to conventional methods.

The domain specialists compare the results of the different recon-
struction algorithms and their parameterizations with each other and
with a reference reconstruction. Regions in the volume with a high
ensemble variation of the intensities (e.g., feature edges on interfaces)
are of great interest to the experts, as the behavior of the reconstruc-
tion algorithm can be deduced if changing specific parameters. The
comparison is typically done visually. It is based on 2D gray value
slices through the volumes arranged side by side. Experts perform this
comparison on a case-by-case basis. They try to determine promising
algorithms and suitable parameters, for instance, by checking for noise
and artifact suppression. The intensity differences between the various
volumetric reconstructions are typically rather small. Therefore it is
difficult for an expert to judge whether a particular algorithm or param-
eter set provides better results (e.g., sharper edges) than another one.
This problem gets even worse if several or even many different recon-
struction results of an algorithm are compared (e.g., due to parameter
variations).

Due to a close collaboration with reconstruction specialists, we
were able to analyze their workflow and identify the following tasks
when comparing many volumes in specific regions of minor intensity
differences:

Task 1: Compare several reconstruction volumes with each other

Task 2: Identify interesting spatial regions based on high local intensity
variations

Task 3: Reveal repeating patterns in the spatial domain, which are of
high variance among all ensemble members

Task 4: Find the most suitable volume in the ensemble

To address domain-specific requirements, we introduce Dynamic
Volume Lines for the interactive visual analysis and comparison of 3D
volumes using nonlinearly scaled 1D Hilbert line plots (see Figure 1).
We build upon the work of Demir et al. [3], who also use the Hilbert
linearization to analyze 3D data. As space-filling curve the Hilbert
curve traverses the entire 3D volume. For the line plot the space-
filling curve is straightened along the horizontal axis. On the vertical
axis the intensities at the specific volume positions are shown. We
extend the approach of Demir et al. by an adaptive, automatic, and
dynamic nonlinear scaling of the horizontal axis, which allows the user
to focus on interesting regions in the volumes. The nonlinear scaling
highlights regions of high variation in the ensemble and optionally hides
uninteresting background regions. Abstracting and reformatting 3D
volumes as line plots is chosen because the domain experts are familiar
with line graphs, which they use on a daily basis. The workflow of
Dynamic Volume Lines starts with the extraction of a region of interest
(ROI), which is for each volume to be analyzed at the same position
and of the same size (see Figure 2a). A Hilbert space-filling curve
for the extracted ensemble volumes is generated by mapping voxel
coordinates and the corresponding intensities in 3D to 1D Hilbert
indices (see Figure 2b). The nonlinear scaling of a Hilbert line plot
is built by summing up the local ensemble variations to formulate a
cumulative importance-function (see Figure 2c), which serves as basis
for the interactive visualization techniques (see Figure 2d–f). Our main
contributions are:

• Design and development of Dynamic Volume Lines, to compare
ensembles of 3D volumes, including the following key features:

– Nonlinear scaling of the 1D Hilbert line plot, which is built from
a cumulative importance-function (see Section 3.2)

– Interactive nonlinearly scaled histogram heatmap, which encodes
the intensity frequencies (see Section 3.3.1)
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Fig. 2. The Dynamic Volume Lines workflow: (a) extraction of interesting
regions, (b) generation of a space-filling Hilbert curve, (c) nonlinear scal-
ing of the Hilbert line plots, (d) interactive nonlinearly scaled histogram
heatmap, (e) interactive nonlinearly scaled 1D Hilbert line plots, (f) and
interactive scaling widget.

– Interactive nonlinearly scaled 1D Hilbert line plots of the individ-
ual volumes in the ensemble (see Section 3.3.2)

– Interactive scaling widget, which illustrates the locally varying
scaling factor (see Section 3.3.3)

• Evaluation of the tool based on two case studies from the XCT
domain

In the subsequent Section 2 we review the related work on compar-
ative and ensemble visualization. In Section 3 we explain Dynamic
Volume Lines, which includes the Hilbert curve generation, the non-
linear scaling based on a cumulative importance-function, and the
interactive visualization techniques. Section 4 describes the data acqui-
sition and the used datasets. Section 5 presents the evaluation of the
developed tool based on two case studies. We conclude and point out
potential future work in Section 6.

2 RELATED WORK

The related work is mainly in the areas of comparative and ensemble
visualization, but also in the fields of visual parameter space analysis
and interactive visual analysis.

Gleicher et al. [9] provide a taxonomy to group visual designs into
one of three basic categories: juxtaposition, superposition, and ex-
plicit encoding. In the work of Malik et al. [21], slices from different

1077-2626 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: Christoph Heinzl. Downloaded on April 30,2021 at 10:15:09 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 1. Dynamic Volume Lines depicts sets of volumes (a) in an overview visualization, i.e., an interactive nonlinearly scaled histogram
heatmap, which encodes intensity frequencies, or (b) in a detailed view, as interactive nonlinearly scaled 1D Hilbert line plots. Based
on the individual 1D Hilbert line plots, functional boxplots (c) are generated on demand. The scaling widget (d) depicts the ensemble
variation on each level of detail.

Abstract— The comparison of many members of an ensemble is difficult, tedious, and error-prone, which is aggravated by often just
subtle differences. In this paper, we introduce Dynamic Volume Lines for the interactive visual analysis and comparison of sets of 3D
volumes. Each volume is linearized along a Hilbert space-filling curve into a 1D Hilbert line plot, which depicts the intensities over the
Hilbert indices. We present a nonlinear scaling of these 1D Hilbert line plots based on the intensity variations in the ensemble of 3D
volumes, which enables a more effective use of the available screen space. The nonlinear scaling builds the basis for our interactive
visualization techniques. An interactive histogram heatmap of the intensity frequencies serves as overview visualization. When zooming
in, the frequencies are replaced by detailed 1D Hilbert line plots and optional functional boxplots. To focus on important regions of the
volume ensemble, nonlinear scaling is incorporated into the plots. An interactive scaling widget depicts the local ensemble variations.
Our brushing and linking interface reveals, for example, regions with a high ensemble variation by showing the affected voxels in
a 3D spatial view. We show the applicability of our concepts using two case studies on ensembles of 3D volumes resulting from
tomographic reconstruction. In the first case study, we evaluate an artificial specimen from simulated industrial 3D X-ray computed
tomography (XCT). In the second case study, a real-world XCT foam specimen is investigated. Our results show that Dynamic Volume
Lines can identify regions with high local intensity variations, allowing the user to draw conclusions, for example, about the choice of
reconstruction parameters. Furthermore, it is possible to detect ring artifacts in reconstructions volumes.

Index Terms—Ensemble data, comparative visualization, visual analysis, Hilbert curve, nonlinear scaling, X-ray computed tomography

1 INTRODUCTION AND MOTIVATION

Synthetic foams are widely used, for example, as packaging, as thermal
insulating materials, or even as lightweight components [19]. The me-
chanical behavior of foamed polymers is mainly influenced by the foam
density, cell size and diameter, foam hardness, and the deformation rate.
For closed-cell and open-cell foams, the determination of the foam
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module is important. For this purpose, the spatial distribution of the
matrix material in the cell walls must be accurately described [10].

A major challenge in three-dimensional material characterization
with conventional industrial 3D X-ray computed tomography (XCT)
systems are low densities and thin cell walls, especially at low physical
resolutions. One method that overcomes these challenges is Talbot-Lau
grating interferometer XCT (TLGI-XCT) [37]. It is a non-destructive
testing method, which fully delivers 3D volume information of the
scanned specimen at a high resolution to precisely capture external
and internal structures (e.g., cracks) in a single scan. TLGI-XCT is
one of the most important X-ray technology innovations in the past ten
years [28]. This method provides three complementary modalities in
one scan of the specimen: (1) the attenuation contrast (AC), (2) the
differential phase contrast (DPC), and (3) the dark-field contrast (DFC).

Currently, it is common practice to reconstruct the data of the three
modalities separately, without simultaneously using the present and
instructive complementary information. To reconstruct the data from
the three modalities, the conventional filtered back-projection algorithm
by Feldkamp, Davis, and Kress (FDK) is used [6]. This reconstruc-
tion algorithm is well suited for XCT data from the AC modality, as
it is a fast and accurate method. However, for the DPC and DFC
modalities, the FDK reconstruction is not optimal because the prior
knowledge and the inherent physical effects of the different modalities

are not considered [17, 33]. Experts in the field of computed tomog-
raphy reconstruction are therefore developing new algorithms based
on appropriate mathematical models. These correspond to the physical
characteristics of the DFC and DPC modalities in order to achieve
satisfying reconstruction results with regard to conventional methods.

The domain specialists compare the results of the different recon-
struction algorithms and their parameterizations with each other and
with a reference reconstruction. Regions in the volume with a high
ensemble variation of the intensities (e.g., feature edges on interfaces)
are of great interest to the experts, as the behavior of the reconstruc-
tion algorithm can be deduced if changing specific parameters. The
comparison is typically done visually. It is based on 2D gray value
slices through the volumes arranged side by side. Experts perform this
comparison on a case-by-case basis. They try to determine promising
algorithms and suitable parameters, for instance, by checking for noise
and artifact suppression. The intensity differences between the various
volumetric reconstructions are typically rather small. Therefore it is
difficult for an expert to judge whether a particular algorithm or param-
eter set provides better results (e.g., sharper edges) than another one.
This problem gets even worse if several or even many different recon-
struction results of an algorithm are compared (e.g., due to parameter
variations).

Due to a close collaboration with reconstruction specialists, we
were able to analyze their workflow and identify the following tasks
when comparing many volumes in specific regions of minor intensity
differences:

Task 1: Compare several reconstruction volumes with each other

Task 2: Identify interesting spatial regions based on high local intensity
variations

Task 3: Reveal repeating patterns in the spatial domain, which are of
high variance among all ensemble members

Task 4: Find the most suitable volume in the ensemble

To address domain-specific requirements, we introduce Dynamic
Volume Lines for the interactive visual analysis and comparison of 3D
volumes using nonlinearly scaled 1D Hilbert line plots (see Figure 1).
We build upon the work of Demir et al. [3], who also use the Hilbert
linearization to analyze 3D data. As space-filling curve the Hilbert
curve traverses the entire 3D volume. For the line plot the space-
filling curve is straightened along the horizontal axis. On the vertical
axis the intensities at the specific volume positions are shown. We
extend the approach of Demir et al. by an adaptive, automatic, and
dynamic nonlinear scaling of the horizontal axis, which allows the user
to focus on interesting regions in the volumes. The nonlinear scaling
highlights regions of high variation in the ensemble and optionally hides
uninteresting background regions. Abstracting and reformatting 3D
volumes as line plots is chosen because the domain experts are familiar
with line graphs, which they use on a daily basis. The workflow of
Dynamic Volume Lines starts with the extraction of a region of interest
(ROI), which is for each volume to be analyzed at the same position
and of the same size (see Figure 2a). A Hilbert space-filling curve
for the extracted ensemble volumes is generated by mapping voxel
coordinates and the corresponding intensities in 3D to 1D Hilbert
indices (see Figure 2b). The nonlinear scaling of a Hilbert line plot
is built by summing up the local ensemble variations to formulate a
cumulative importance-function (see Figure 2c), which serves as basis
for the interactive visualization techniques (see Figure 2d–f). Our main
contributions are:

• Design and development of Dynamic Volume Lines, to compare
ensembles of 3D volumes, including the following key features:

– Nonlinear scaling of the 1D Hilbert line plot, which is built from
a cumulative importance-function (see Section 3.2)

– Interactive nonlinearly scaled histogram heatmap, which encodes
the intensity frequencies (see Section 3.3.1)
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Fig. 2. The Dynamic Volume Lines workflow: (a) extraction of interesting
regions, (b) generation of a space-filling Hilbert curve, (c) nonlinear scal-
ing of the Hilbert line plots, (d) interactive nonlinearly scaled histogram
heatmap, (e) interactive nonlinearly scaled 1D Hilbert line plots, (f) and
interactive scaling widget.

– Interactive nonlinearly scaled 1D Hilbert line plots of the individ-
ual volumes in the ensemble (see Section 3.3.2)

– Interactive scaling widget, which illustrates the locally varying
scaling factor (see Section 3.3.3)

• Evaluation of the tool based on two case studies from the XCT
domain

In the subsequent Section 2 we review the related work on compar-
ative and ensemble visualization. In Section 3 we explain Dynamic
Volume Lines, which includes the Hilbert curve generation, the non-
linear scaling based on a cumulative importance-function, and the
interactive visualization techniques. Section 4 describes the data acqui-
sition and the used datasets. Section 5 presents the evaluation of the
developed tool based on two case studies. We conclude and point out
potential future work in Section 6.

2 RELATED WORK

The related work is mainly in the areas of comparative and ensemble
visualization, but also in the fields of visual parameter space analysis
and interactive visual analysis.

Gleicher et al. [9] provide a taxonomy to group visual designs into
one of three basic categories: juxtaposition, superposition, and ex-
plicit encoding. In the work of Malik et al. [21], slices from different

Authorized licensed use limited to: Christoph Heinzl. Downloaded on April 30,2021 at 10:15:09 UTC from IEEE Xplore.  Restrictions apply. 



1042  IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 1, JANUARY 2019

volumes are compared in a hexagonal arrangement. This visual rep-
resentation works only for a rather small number of datasets to be
compared. Schmidt et al. [35] present a tool for the comparative visual
analysis of 3D meshes, which enables the simultaneous comparison
of several meshes and allows for the interactive exploration of their
differences. In an earlier work [34], they present a method for visualiz-
ing differences and similarities in large sets of images. The technique
preserves contextual information, but also allows the user to perform
a detailed analysis of subtle variations. Based on magnetic resonance
cartilage-imaging techniques, Mlejnek et al. [25] propose 3D glyphs,
called Profile Flags, for the probing of sets of underlying curve data.
Weissenböck et al. [42] introduce a system to evaluate the porosity
in 3D volumes. They provide 2D slice views and 3D renderings to
compare the different pore segmentation results due to varying seg-
mentation parameters. Many of the ensembles investigated in these
works result from analyzing the parameter space of some algorithm,
for which Sedlmair et al. [36] present a conceptual framework to guide
and systematize research endeavors.

Ensemble visualization often uses statistical summaries for the com-
parison of many similar datasets. Ensemble-Vis by Potter et al. [30] is a
framework consisting of an interactively linked overview and statistical
displays for the discovery and evaluation of simulated meteorology
outcomes. Jarema et al. [16] provide a visual-analysis user-interface
with multiple linked views to support the comparative exploration of
2D vector-valued ensemble fields. Fröhler et al. [7] present an inter-
active tool for exploring and analyzing the parameter space of multi-
channel segmentation algorithms and the corresponding ensemble of
segmentation results. Several works have been published, which embed
descriptive statistics measures such as minimum, median, and maxi-
mum in functional boxplots [39], contour boxplots [43], and curved
boxplots [24]. Genton et al. [8] developed surface boxplots for the
visualization and exploratory analysis of samples of images to detect
potential outliers. They use the notion of volume depth to order the im-
ages interpreted as hightfields. Raj et al. [31] examine the effectiveness
of contour boxplots in the medical domain of brain atlas analysis. They
extend contour boxplots to 3D to visualize and interact with ensembles
of 3D isosurfaces. Demir et al. [4] determine the most central shape
from a given set, to quantify a region-wise centrality, and to compute
the locally most representative shape. Konyha et al. [18] and Matkovic
et al. [22] focus on the interactive visual analysis of ensembles of curves
called families of curves or families of surfaces using data aggregation
and attribute derivation. Piringer et al. [29] extend the work on feature-
preserving downsampling of 2D functions. They discuss a design study
of an interactive approach for the comparative visual analysis of 2D
function ensembles.

In the context of visual analysis, the state of the art report by Heinzl
and Stappen [15] closes a gap between visual computing and material
science. Torsney-Weir et al. [40] propose Sliceplorer to visually ex-
amine multi-dimensional continuous scalar functions with 1D slices.
Their technique combines the benefits of topological views, i.e., screen
space efficiency, with those of slices, that are a close resemblance of the
underlying function. Another work of Demir et al. [3], presents Multi-
Charts, an interface to visually analyze 3D scalar ensemble fields by
linearizing the 3D data points along a space-filling curve. Our approach
is similar to Multi-Charts, as we also use the Hilbert space-filling curve
to linearize 3D volumes and represent the volumes as 1D line plots.
Demir et al. represent the individual ensemble members as multiple
stacked and combined bar and line charts at different levels of detail.
For analyzing such regions the user has to zoom in and out. This leads
to a loss of context. A significant difference in our work is the com-
putation of a nonlinear scaling of the x-axis based on local ensemble
variations. The nonlinear scaling allows us to depict all 3D volumes as
1D line plots, which can be presented in one visualization. As a result,
uninteresting regions (with low ensemble variance) are compressed in
the line plots, and interesting regions (with high ensemble variance) are
expanded. Thereby, we can optimally use the available screen space
and no zooming is necessary in the first place, as we provide insight
into the interesting regions from the initial overview state. The indi-
vidual line plots of the corresponding 3D volumes can be aggregated

using functional boxplots. Thus, we provide a statistical overview of
the ensemble. In addition, the scaling widget indicates the nonlinear
scaling of the data. Finally, we support an importance-driven selection
by defining ranges based on a cumulative importance-function.

3 DYNAMIC VOLUME LINES

In this section we explain the generation of the Hilbert curve based on
the 3D voxel intensities and compare the line plots of the Hilbert curve
with the line plots of the scan line curve (see Section 3.1). Furthermore,
we describe the nonlinear scaling of the Hilbert line plots based on
local ensemble variations (see Section 3.2).

The basic motivation of Dynamic Volume Lines is to linearize 3D
volumes along a space-filling curve. The resulting line plots are a
familiar representation to engineers. Without occlusion many volumes
can be compared through their line plots. A comparison of many vol-
umes in their original 3D space that differ only slightly from each other
turns out to be difficult with traditional methods. For example, a direct
volume visualization of many datasets is plagued by severe clutter and
occlusion problems. This effect is further reinforced by the increasing
number of volumes to compare. The same is true for 2D slice views. Ar-
ranging two or four slice views of different volumes side by side would
be feasible, but with an increasing number of volumes to compare, e.g.,
six, it is nearly impossible to find regions where the volumes differ. For
example: if individual voxels differ by 5000 intensities, this difference
is difficult to perceive as brightness difference, even for an expert. For
a line plot in a range of 65000 intensities on the y-axis, this amplitude
drop would be 7% and thus easier to recognize as positional difference.
A positional encoding is much more effective than color coding to indi-
cate subtle differences. Comparing intensities is much easier through
line plots, in contrast to having first to match them in two or more 2D
(or 3D) views and then comparing their color encoding. One could
apply statistical aggregation to determine a volume where the voxels
contain the local ensemble variances. But even in such a reduced data,
rendering is affected by clutter and occlusion. For example, to make
differences visible in the interior of the volume, the opacity must be
set to a low value. However, larger differences are then only vaguely
recognizable. Small differences will be lost. In addition, statistical
aggregation volumes provide only a summary or overview and would
require additional detailed visualizations to compare specific members
in a region of interest. In our approach the differences between the
individual members can easily be inspected by comparing line plots.

A drawback of linearizing volumes is the loss of spatial coherency.
Among the many possibilities of space-filling curves we decided for
one which is preserving the spatial coherency as much as possible. The
wigglyness of the Hilbert curve ensures that very often neighboring
voxels in the 3D volumes are mapped to nearby locations in the straight-
ened Hilbert line plot. We compare the spatial coherence of the Hilbert
curve with respect to another simple volume linearization, i.e., the scan
line curve where the volume is traversed slice by slice and scan line by
scan line within a slice. Switching scan lines or slices introduce large
spatial incoherences. Such incoherencies appear with Hilbert curves as
well, but much less.

3.1 Hilbert Space-Filling Curve Generation
In general, with space-filling curves, n-dimensional regular grids can
be completely traversed and the grid points can be brought into a one-
dimensional linear order. In this sense volumes are three-dimensional
regular grids. There are many different space-filling curves such as the
Hilbert curve, the Peano curve, or the Z-curve. An obvious approach to
linearize the intensities of a 3D volume is to traverse the voxels in z-,
y-, and x-axis order along a scan line curve, line by line and slice by
slice (see Figure 3a). The disadvantage of this approach is that there are
large jumps in the scan line curve between the last voxel of the previous
row and the first voxel of the next row and the last voxel of the previous
slice and the first voxel of the current slice, respectively. In contrast,
the Hilbert space-filling curve traverses every point of a square, a cube,
or more generally, an n-dimensional hypercube, by preserving locality
much better. Points close to each other in the n-dimensional space
are very often close in their order along the Hilbert curve and vice

d 
(1) 

(2) (3) (4) 

Seed curve Slice Z Slice Z+1 

c 

e 

a b 

Fig. 3. (a) shows the scan line curve of a 3D volume dataset by traversing
the voxels along their appearance. The blue dots mark a large jump
due to a line change and the red dots mark a large jumps due to a slice
change. (b) depicts the Hilbert curve of order one (initial seed curve).
(c–d) illustrate the individual steps to generate a Hilbert curve of order
two in 2D space. (e) shows the Hilbert curve of order three.
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Fig. 4. Difference between the scan line curve and the Hilbert curve due
to large jumps and different locality preservation. The six datasets of the
artificial specimen (see Section 4.2) are represented by color-coded line
plots (from light green to blue). The line plots are based on (a) the scan
line curve and (b) on the Hilbert curve.

versa [11]. This results in fewer large jumps. Therefore in this work,
we focus on the Hilbert curve, as it preserves the locality best [26].

In the following we describe the generation of the space-filling
Hilbert curve exemplarily in 2D space [13]. Consider the initial seed
curve defined on a 2×2 grid as shown in Figure 3b. It is called order 1
Hilbert curve. Based on an order k Hilbert curve defined on a 2k ×2k

grid, we define the order k+1 Hilbert curve on a 2k+1 × 2k+1 grid
according to four steps (see Figures 3c–d):

1. Place a copy of the curve in the lower right cell and rotate it 90°
counter-clockwise.

2. Place a copy of the curve in the lower left cell and rotate it 90°
clockwise.

3. Place a copy of the curve in each of the upper cells.
4. Connect the curves with each other.

The resulting space-filling curve visits every voxel exactly once and
assigns it a scalar index resulting from the traversal order (Hilbert
index). For example, Figures 3b, 3c(4), and 3e show the Hilbert
curves of order one, two, and three. Figure 2b (on the right) shows the
Hilbert curve of order one in 3D space.

In the case of Dynamic Volume Lines, all 3D volume datasets are
linearized using the implementation of Hamilton and Rau-Chaplin [14].
It generates a Hilbert space-filling curve where the volumes do not need
to have the same number of voxels along the x-, y-, and z-axis. The
resolution along the individual axes also need not be a power of two.
Figure 4 illustrates the difference between linearizing along the Hilbert
curve and the scan line curve. It depicts the six volumes of the artificial

specimen (see Section 4), each represented by a color-coded line plot
(from light green to blue). The scan line plots in Figure 4a fluctuate
more, due to less spatial coherence, as compared to the Hilbert line
plots (in Figure 4b).

3.2 Nonlinear Scaling of the Hilbert Line Plots
When generating the Hilbert curve for a dataset of 16×16×16 voxels
in size, 4096 Hilbert indices are created. Currently the horizontal
screen resolution of a standard PC monitor is typically between 2000
and 3000 pixels. If one wants to display all the 4096 Hilbert indices
as points in a 1D Hilbert line plot on the monitor, it turns out, that the
horizontal screen resolution is not sufficient to assign each Hilbert index
to its own pixel column. This problem becomes even more severe with
increasing volume size. Linearizing a volume reduces it to a simple
line plot, but with a tremendous horizontal resolution, i.e., number of
voxels. This requires automatic scaling along the horizontal axis so that
important regions get the screen space they need. Unimportant regions
like background can be drastically reduced in their screen space or even
removed. To counteract the problem of the limited screen space, we
apply a nonlinear scaling to the Hilbert line plot. Since the domain
experts are interested in those regions of the dataset where the variation
of the intensities is high, we compute the maximum local ensemble
variation Vh for every Hilbert index as follows:

V h = max
∀m∈Mh

Intensityh(m)− min
∀m∈Mh

Intensityh(m) (1)

m defines an ensemble member of a local ensemble Mh at a discrete
Hilbert index h, Intensityh defines the intensity at Hilbert index h for
member m.

Inspired by the work of Mindek et al. [23] and Lindow et al. [20],
we formulate the discrete local importance-function fl based on the
maximum local ensemble variation Vh:

fl(h) =
(

Vh

maxVh

)p
(2)

To be able to filter for a specific importance-value, we do a normal-
ization by the maximally occurring local ensemble variation. To in-
fluence the nonlinear scaling, we introduce an exponent p, which can
be adapted by the user. Setting this parameter to zero means equal
importance for all Hilbert indices, setting it higher than zero increases
the importance-value for Hilbert indices with a high variance in the
ensemble. Exponent p can be adapted by the user to fine-tune the
importance-value according to the individual application scenario. By
summing the local importance-function values, we define the cumula-
tive importance-function fc as follows:

fc(h) =
h

∑
i=0

fl(i) (3)

The cumulative importance-function values serve as a nonlinear map-
ping to compress the distances between the Hilbert indices (on the
x-axis). Figure 2c illustrates the calculation of the nonlinear mapping.
Figure 5 illustrates the effect of nonlinearly scaling the Hilbert line
plots. The regions indicated with red in Figure 5b are compressed (re-
spectively uncompressed in Figure 5a) by the nonlinear scaling because
of the low ensemble variation in these regions. In addition, we allow the
user to set a threshold for intensities that are not of interest (e.g., areas
of air in the dataset). For these background areas (see Figure 6) fl is
fixed to a value of 0.025. This value ensures that the background areas
are still sufficiently visible, but at the same time occupy little screen
space. By increasing the parameter p, the width of the background
regions can be adjusted.

3.3 Visualization Techniques
Dynamic Volume Lines provides multiple linked views and follows the
visual information-seeking mantra by Ben Shneiderman, “overview
first, zoom and filter, then details on demand” [38]. Two charts, one
with nonlinear scaling and one with constant scaling, are arranged on
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volumes are compared in a hexagonal arrangement. This visual rep-
resentation works only for a rather small number of datasets to be
compared. Schmidt et al. [35] present a tool for the comparative visual
analysis of 3D meshes, which enables the simultaneous comparison
of several meshes and allows for the interactive exploration of their
differences. In an earlier work [34], they present a method for visualiz-
ing differences and similarities in large sets of images. The technique
preserves contextual information, but also allows the user to perform
a detailed analysis of subtle variations. Based on magnetic resonance
cartilage-imaging techniques, Mlejnek et al. [25] propose 3D glyphs,
called Profile Flags, for the probing of sets of underlying curve data.
Weissenböck et al. [42] introduce a system to evaluate the porosity
in 3D volumes. They provide 2D slice views and 3D renderings to
compare the different pore segmentation results due to varying seg-
mentation parameters. Many of the ensembles investigated in these
works result from analyzing the parameter space of some algorithm,
for which Sedlmair et al. [36] present a conceptual framework to guide
and systematize research endeavors.

Ensemble visualization often uses statistical summaries for the com-
parison of many similar datasets. Ensemble-Vis by Potter et al. [30] is a
framework consisting of an interactively linked overview and statistical
displays for the discovery and evaluation of simulated meteorology
outcomes. Jarema et al. [16] provide a visual-analysis user-interface
with multiple linked views to support the comparative exploration of
2D vector-valued ensemble fields. Fröhler et al. [7] present an inter-
active tool for exploring and analyzing the parameter space of multi-
channel segmentation algorithms and the corresponding ensemble of
segmentation results. Several works have been published, which embed
descriptive statistics measures such as minimum, median, and maxi-
mum in functional boxplots [39], contour boxplots [43], and curved
boxplots [24]. Genton et al. [8] developed surface boxplots for the
visualization and exploratory analysis of samples of images to detect
potential outliers. They use the notion of volume depth to order the im-
ages interpreted as hightfields. Raj et al. [31] examine the effectiveness
of contour boxplots in the medical domain of brain atlas analysis. They
extend contour boxplots to 3D to visualize and interact with ensembles
of 3D isosurfaces. Demir et al. [4] determine the most central shape
from a given set, to quantify a region-wise centrality, and to compute
the locally most representative shape. Konyha et al. [18] and Matkovic
et al. [22] focus on the interactive visual analysis of ensembles of curves
called families of curves or families of surfaces using data aggregation
and attribute derivation. Piringer et al. [29] extend the work on feature-
preserving downsampling of 2D functions. They discuss a design study
of an interactive approach for the comparative visual analysis of 2D
function ensembles.

In the context of visual analysis, the state of the art report by Heinzl
and Stappen [15] closes a gap between visual computing and material
science. Torsney-Weir et al. [40] propose Sliceplorer to visually ex-
amine multi-dimensional continuous scalar functions with 1D slices.
Their technique combines the benefits of topological views, i.e., screen
space efficiency, with those of slices, that are a close resemblance of the
underlying function. Another work of Demir et al. [3], presents Multi-
Charts, an interface to visually analyze 3D scalar ensemble fields by
linearizing the 3D data points along a space-filling curve. Our approach
is similar to Multi-Charts, as we also use the Hilbert space-filling curve
to linearize 3D volumes and represent the volumes as 1D line plots.
Demir et al. represent the individual ensemble members as multiple
stacked and combined bar and line charts at different levels of detail.
For analyzing such regions the user has to zoom in and out. This leads
to a loss of context. A significant difference in our work is the com-
putation of a nonlinear scaling of the x-axis based on local ensemble
variations. The nonlinear scaling allows us to depict all 3D volumes as
1D line plots, which can be presented in one visualization. As a result,
uninteresting regions (with low ensemble variance) are compressed in
the line plots, and interesting regions (with high ensemble variance) are
expanded. Thereby, we can optimally use the available screen space
and no zooming is necessary in the first place, as we provide insight
into the interesting regions from the initial overview state. The indi-
vidual line plots of the corresponding 3D volumes can be aggregated

using functional boxplots. Thus, we provide a statistical overview of
the ensemble. In addition, the scaling widget indicates the nonlinear
scaling of the data. Finally, we support an importance-driven selection
by defining ranges based on a cumulative importance-function.

3 DYNAMIC VOLUME LINES

In this section we explain the generation of the Hilbert curve based on
the 3D voxel intensities and compare the line plots of the Hilbert curve
with the line plots of the scan line curve (see Section 3.1). Furthermore,
we describe the nonlinear scaling of the Hilbert line plots based on
local ensemble variations (see Section 3.2).

The basic motivation of Dynamic Volume Lines is to linearize 3D
volumes along a space-filling curve. The resulting line plots are a
familiar representation to engineers. Without occlusion many volumes
can be compared through their line plots. A comparison of many vol-
umes in their original 3D space that differ only slightly from each other
turns out to be difficult with traditional methods. For example, a direct
volume visualization of many datasets is plagued by severe clutter and
occlusion problems. This effect is further reinforced by the increasing
number of volumes to compare. The same is true for 2D slice views. Ar-
ranging two or four slice views of different volumes side by side would
be feasible, but with an increasing number of volumes to compare, e.g.,
six, it is nearly impossible to find regions where the volumes differ. For
example: if individual voxels differ by 5000 intensities, this difference
is difficult to perceive as brightness difference, even for an expert. For
a line plot in a range of 65000 intensities on the y-axis, this amplitude
drop would be 7% and thus easier to recognize as positional difference.
A positional encoding is much more effective than color coding to indi-
cate subtle differences. Comparing intensities is much easier through
line plots, in contrast to having first to match them in two or more 2D
(or 3D) views and then comparing their color encoding. One could
apply statistical aggregation to determine a volume where the voxels
contain the local ensemble variances. But even in such a reduced data,
rendering is affected by clutter and occlusion. For example, to make
differences visible in the interior of the volume, the opacity must be
set to a low value. However, larger differences are then only vaguely
recognizable. Small differences will be lost. In addition, statistical
aggregation volumes provide only a summary or overview and would
require additional detailed visualizations to compare specific members
in a region of interest. In our approach the differences between the
individual members can easily be inspected by comparing line plots.

A drawback of linearizing volumes is the loss of spatial coherency.
Among the many possibilities of space-filling curves we decided for
one which is preserving the spatial coherency as much as possible. The
wigglyness of the Hilbert curve ensures that very often neighboring
voxels in the 3D volumes are mapped to nearby locations in the straight-
ened Hilbert line plot. We compare the spatial coherence of the Hilbert
curve with respect to another simple volume linearization, i.e., the scan
line curve where the volume is traversed slice by slice and scan line by
scan line within a slice. Switching scan lines or slices introduce large
spatial incoherences. Such incoherencies appear with Hilbert curves as
well, but much less.

3.1 Hilbert Space-Filling Curve Generation
In general, with space-filling curves, n-dimensional regular grids can
be completely traversed and the grid points can be brought into a one-
dimensional linear order. In this sense volumes are three-dimensional
regular grids. There are many different space-filling curves such as the
Hilbert curve, the Peano curve, or the Z-curve. An obvious approach to
linearize the intensities of a 3D volume is to traverse the voxels in z-,
y-, and x-axis order along a scan line curve, line by line and slice by
slice (see Figure 3a). The disadvantage of this approach is that there are
large jumps in the scan line curve between the last voxel of the previous
row and the first voxel of the next row and the last voxel of the previous
slice and the first voxel of the current slice, respectively. In contrast,
the Hilbert space-filling curve traverses every point of a square, a cube,
or more generally, an n-dimensional hypercube, by preserving locality
much better. Points close to each other in the n-dimensional space
are very often close in their order along the Hilbert curve and vice
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Fig. 3. (a) shows the scan line curve of a 3D volume dataset by traversing
the voxels along their appearance. The blue dots mark a large jump
due to a line change and the red dots mark a large jumps due to a slice
change. (b) depicts the Hilbert curve of order one (initial seed curve).
(c–d) illustrate the individual steps to generate a Hilbert curve of order
two in 2D space. (e) shows the Hilbert curve of order three.
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Fig. 4. Difference between the scan line curve and the Hilbert curve due
to large jumps and different locality preservation. The six datasets of the
artificial specimen (see Section 4.2) are represented by color-coded line
plots (from light green to blue). The line plots are based on (a) the scan
line curve and (b) on the Hilbert curve.

versa [11]. This results in fewer large jumps. Therefore in this work,
we focus on the Hilbert curve, as it preserves the locality best [26].

In the following we describe the generation of the space-filling
Hilbert curve exemplarily in 2D space [13]. Consider the initial seed
curve defined on a 2×2 grid as shown in Figure 3b. It is called order 1
Hilbert curve. Based on an order k Hilbert curve defined on a 2k ×2k

grid, we define the order k+1 Hilbert curve on a 2k+1 × 2k+1 grid
according to four steps (see Figures 3c–d):

1. Place a copy of the curve in the lower right cell and rotate it 90°
counter-clockwise.

2. Place a copy of the curve in the lower left cell and rotate it 90°
clockwise.

3. Place a copy of the curve in each of the upper cells.
4. Connect the curves with each other.

The resulting space-filling curve visits every voxel exactly once and
assigns it a scalar index resulting from the traversal order (Hilbert
index). For example, Figures 3b, 3c(4), and 3e show the Hilbert
curves of order one, two, and three. Figure 2b (on the right) shows the
Hilbert curve of order one in 3D space.

In the case of Dynamic Volume Lines, all 3D volume datasets are
linearized using the implementation of Hamilton and Rau-Chaplin [14].
It generates a Hilbert space-filling curve where the volumes do not need
to have the same number of voxels along the x-, y-, and z-axis. The
resolution along the individual axes also need not be a power of two.
Figure 4 illustrates the difference between linearizing along the Hilbert
curve and the scan line curve. It depicts the six volumes of the artificial

specimen (see Section 4), each represented by a color-coded line plot
(from light green to blue). The scan line plots in Figure 4a fluctuate
more, due to less spatial coherence, as compared to the Hilbert line
plots (in Figure 4b).

3.2 Nonlinear Scaling of the Hilbert Line Plots
When generating the Hilbert curve for a dataset of 16×16×16 voxels
in size, 4096 Hilbert indices are created. Currently the horizontal
screen resolution of a standard PC monitor is typically between 2000
and 3000 pixels. If one wants to display all the 4096 Hilbert indices
as points in a 1D Hilbert line plot on the monitor, it turns out, that the
horizontal screen resolution is not sufficient to assign each Hilbert index
to its own pixel column. This problem becomes even more severe with
increasing volume size. Linearizing a volume reduces it to a simple
line plot, but with a tremendous horizontal resolution, i.e., number of
voxels. This requires automatic scaling along the horizontal axis so that
important regions get the screen space they need. Unimportant regions
like background can be drastically reduced in their screen space or even
removed. To counteract the problem of the limited screen space, we
apply a nonlinear scaling to the Hilbert line plot. Since the domain
experts are interested in those regions of the dataset where the variation
of the intensities is high, we compute the maximum local ensemble
variation Vh for every Hilbert index as follows:

V h = max
∀m∈Mh

Intensityh(m)− min
∀m∈Mh

Intensityh(m) (1)

m defines an ensemble member of a local ensemble Mh at a discrete
Hilbert index h, Intensityh defines the intensity at Hilbert index h for
member m.

Inspired by the work of Mindek et al. [23] and Lindow et al. [20],
we formulate the discrete local importance-function fl based on the
maximum local ensemble variation Vh:

fl(h) =
(

Vh

maxVh

)p
(2)

To be able to filter for a specific importance-value, we do a normal-
ization by the maximally occurring local ensemble variation. To in-
fluence the nonlinear scaling, we introduce an exponent p, which can
be adapted by the user. Setting this parameter to zero means equal
importance for all Hilbert indices, setting it higher than zero increases
the importance-value for Hilbert indices with a high variance in the
ensemble. Exponent p can be adapted by the user to fine-tune the
importance-value according to the individual application scenario. By
summing the local importance-function values, we define the cumula-
tive importance-function fc as follows:

fc(h) =
h

∑
i=0

fl(i) (3)

The cumulative importance-function values serve as a nonlinear map-
ping to compress the distances between the Hilbert indices (on the
x-axis). Figure 2c illustrates the calculation of the nonlinear mapping.
Figure 5 illustrates the effect of nonlinearly scaling the Hilbert line
plots. The regions indicated with red in Figure 5b are compressed (re-
spectively uncompressed in Figure 5a) by the nonlinear scaling because
of the low ensemble variation in these regions. In addition, we allow the
user to set a threshold for intensities that are not of interest (e.g., areas
of air in the dataset). For these background areas (see Figure 6) fl is
fixed to a value of 0.025. This value ensures that the background areas
are still sufficiently visible, but at the same time occupy little screen
space. By increasing the parameter p, the width of the background
regions can be adjusted.

3.3 Visualization Techniques
Dynamic Volume Lines provides multiple linked views and follows the
visual information-seeking mantra by Ben Shneiderman, “overview
first, zoom and filter, then details on demand” [38]. Two charts, one
with nonlinear scaling and one with constant scaling, are arranged on
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Fig. 5. Effect of the nonlinear scaling. (a) Constantly scaled 1D Hilbert
line plots of six 3D volumes. (b) nonlinearly scaled 1D Hilbert line plots
of the same six 3D volumes.

top of each other with a scaling widget in-between. An overview is pro-
vided through the nonlinearly scaled histogram heatmap visualization.
Background regions can be filtered out. If the user zooms into the chart,
details for each volume are provided through the 1D Hilbert line plots.
An orientation widget displays the size and position of the currently
visible chart area in light blue compared to the overall chart size, which
is shown in gray (see bottom of Figures 6 and 7). In addition, we enable
brushing and linking to immediately highlight the affected voxels or
Hilbert indices when performing a selection in the 1D Hilbert line plots
or in the 3D spatial view, respectively.

3.3.1 Interactive Histogram Heatmap Visualization

The histogram heatmap visualization provides an overview of the in-
tensity distribution in the volume ensemble. To be able to fit the full
volume into a chart with the width of the screen, we split the x-axis of
the nonlinearly scaled chart into intervals of equal width. Due to the
nonlinear scaling, the intervals may include a varying number of Hilbert
indices. For each interval we then compute a single histogram of the
intensities at the included Hilbert indices, over all ensemble members.
The single histogram is visualized as a heatmap through a vertical bar,
all histograms together form a histogram heatmap. The default width of
each histogram bar is 10 pixels, and by default each histogram has 64
bins. These parameters can be adapted by the user to best fit the size and
intensity distribution of the currently analyzed volumes. To improve the
performance in computing the histogram heatmap, we adapt a segment
tree [2]. A segment tree is a binary tree used for storing segments in
the range 0...n−1. Each node represents a segment and is assigned the
corresponding histogram. The segment of a leave node covers only one
Hilbert index (voxel), the segment of the root node covers all Hilbert
indices. The segment tree partitions an arbitrary interval into a minimal
set of segments (of varying sizes). With this, we avoid to compute the
histogram of an interval based on single voxels. Instead we combine
the histograms of the highest-level nodes, whose segments are included
in the requested interval. The root node of the segment tree contains the
entire segment [0,n−1]. A leaf node represents an elementary segment,
which corresponds to one Hilbert index, i.e., one voxel. It is assigned
the histogram of all the intensities at that voxel throughout the entire
volume ensemble. The internal nodes merge the segments of their child
nodes. The segment tree can be serialized using an array of size n−1.
The internal nodes are stored in the first half of the array, the leaf nodes
are stored in the second half of the array. The left child of each node at
index i can be found at index 2∗ i+1, the right child at index 2∗ i+2.
The segment tree is built bottom-up by taking the pairs of nodes with
indices (2 ∗ i+ 1,2 ∗ i+ 2) and aggregating their histograms into the
histogram of the parent at index i. The construction of the segment
tree is performed for every ensemble and takes O(n) time. In our case,
each node of the segment tree contains the histogram for a segment
of a certain contiguous range of Hilbert indices. A vertical bar of the

histogram heatmap is created by summing up each histogram of the
individual volumes. Due to the nonlinear scaling, many Hilbert indices
may be covered by a vertical bar of the histogram heatmap. Without the
segment tree, a histogram would have to be calculated from all these
Hilbert indices. With the segment tree, a histogram for a vertical bar
can be generated in O(logn) time, since only a few nodes need to be
traversed. The segment tree therefore supports efficient rescaling of the
charts.

In the figures in this paper, the extended black body scheme proposed
by Moreland [27] is used as color map for the histogram heatmap, but
other predefined color maps can be selected by the user. Figure 6 shows
an example histogram heatmap. White regions denote a high concen-
tration of intensities in a single bin. This is the case if all ensemble
members agree on a small range of intensities, i.e., if the variation is
low in that region. In contrast, a high variation is indicated by a broader
distribution in violet, red, and yellow colors from the middle of the
color map. The focus in XCT images is typically on regions containing
an object, therefore areas containing only background, i.e., air, are not
of interest and can be ignored for the analysis. The background areas,
where the intensities of all ensemble members are below a user-defined
threshold, are assigned a very low importance-value and therefore are
highly compressed in the nonlinear scaling. Setting the background
threshold is optional, a value of zero means that the background is
left out altogether. Instead of showing a histogram, these background
regions are depicted by light orange boxes. In this fashion, we can
identify interesting regions, i.e., those with high local variation, which
addresses Task 2 from Section 1.

3.3.2 Interactive 1D Hilbert Line Plot Visualization
In the 1D Hilbert line plots, for each volume, the intensities are plotted
on the y-axis over the Hilbert indices on the x-axis. Each plot is
assigned a distinctive color taken from the metro color scheme of
MaterialUI [1], as can be seen in Figure 7a. When zooming into the
histogram heatmap, the 1D Hilbert line plots are activated automatically
as soon as the range of currently visible Hilbert indices fits on the screen
without aggregation. The 1D Hilbert line plots can also be shown as
an overlay on the histogram heatmap. Specific ensemble members can
always be activated and deactivated by clicking on them in the legend.
The current mouse position is highlighted by a position marker line (the
orange line in Figure 7a and c), augmented with a tool-tip displaying the
Hilbert index and intensity at that position. For better visibility and to
better visually link the nonlinearly scaled and the linearly scaled chart,
this line is updated simultaneously in both charts. Visualizing two or
more 1D Hilbert line plots side by side enables a detailed analysis and
comparison of all ensemble members, addressing Task 1 and Task 4
from Section 1.

Dynamic Volume Lines provides several ways to select regions of in-
terest. The user can perform rectangular multi-selections directly in the
charts. Additionally, all Hilbert indices within a specified importance-
range can be selected by defining upper and lower bounds. Furthermore,
the user can perform a selection in the 3D spatial view, by marking a
rectangular region with a dragging interaction. This selects all voxels
inside of the cuboid region that is spanned by projecting the rectangle
from the near plane of the viewing frustum along the viewing direction
to the far plane. In either case, all intervals in the Hilbert line plot
falling into the selected region are highlighted. They are emphasized in
the scaling widget as well, and the respective regions in the selected
ensemble members are displayed in a separate 3D visualization. As
a result, different or similar areas in the ensemble of reconstruction
volumes can be identified and thus repeating patterns in the data (e.g.,
ring artifacts) can be exposed. This addresses Task 3 from Section 1.
Optionally, we provide an aggregated view of the individual 1D Hilbert
line plots using functional boxplots [39]. The functional boxplots show
statistical properties such as the lower and upper whisker, the median,
and the interquartile range (see Figure 1c).

3.3.3 Scaling Widget Visualization
Dynamic Volume Lines depicts a nonlinearly scaled chart at the top and
a constantly scaled chart at the bottom, both showing the histogram
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Fig. 6. The histogram heatmap overview visualization with the extended black body heatmap. White areas indicate a high concentration of intensities.
This is the case if all ensemble members agree on a small range of intensities, i.e., the variation in this region is low. A high variation is indicated by a
broader distribution in violet, red, and yellow. Light orange background areas hide the uninteresting intensities below 30000.
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Fig. 7. (a) The nonlinearly scaled chart shows the differently colored 1D Hilbert line plots for each volume. The intensities are plotted on the y-axis
over the Hilbert indeces on the x-axis. The current mouse position is highlighted by an orange position marker line, which shows the Hilbert index
and intensity at that position. (b) depicts the scaling widget, which emphasizes the nonlinear scaling. (c) shows the constantly scaled chart with the
individual 1D Hilbert line plots.

heatmap visualization as well as the Hilbert line plot visualization.
Early prototypes just had those two charts on top of each other. When
working with those early prototypes together with the domain experts,
we realized that an explicit visualization of the nonlinear scaling is
necessary. For this purpose, the current design includes the scaling
widget, as shown in Figure 7b. Each single histogram of the histogram
heatmap in the nonlinearly scaled chart is mapped to the corresponding
histogram in the constantly scaled chart. If the line plots are visible,
each Hilbert index in the nonlinearly scaled chart maps to the corre-
sponding index in the constantly scaled chart. Small rectangles at the
top of the scaling widget each represent a histogram or Hilbert index.
Their gray values encode the local ensemble variation. Black represents
a low variation, white a high variation. From these rectangles at the top,
trapezoids extend to the bottom. Their color is gradually shifting to an
average gray value, which represents the constant scaling applied in the
lower plot. The position marker line is also shown in the scaling widget,
linking the nonlinearly scaled chart at the top with the constantly scaled
chart at the bottom, as shown in Figure 7.

4 DATASETS

This section briefly explains how the industrial 3D X-ray computed to-
mography (XCT) data is acquired (see Section 4.1) and which datasets
are used (see Section 4.2).

4.1 Data Acquisition
XCT provides a volumetric representation of a scanned specimen. The
specimen is placed on a rotary table between the X-ray source and the
detector. While the specimen is rotating, the source emits cone-beam

X-rays. The detector collects the X-rays attenuated by the specimen.
The attenuation depends on the density and atomic number of the
material and on the penetration thickness of the specimen. The detector
converts the radiation intensity into a series of digital projection images.
In the reconstruction stage, an algorithm is applied on the projection
images in order to reconstruct the 3D volume of the specimen. Talbot-
Lau grating interferometer XCT (TLGI-XCT) delivers, in contrast to
conventional XCT, three complementary modalities, i.e., attenuation
contrast (AC), differential phase contrast (DPC), and dark-field contrast
(DFC) in a single scan. The three modalities are perfectly registered to
each other. AC provides information on the attenuation of the X-ray
beam intensity and thus is equivalent to conventional X-ray imaging.
DPC is related to the index of refraction and image contrast, which
is achieved by the local deflection of the X-ray beam. DFC reflects
the total amount of radiation scattered at small angles, e.g., caused by
microscopic structures in the sample like particles, pores, fibers, struts,
or cracks. In addition, the DFC modality produces a strong signal and
a high contrast at interfaces and reveals information that is undetected
by AC and DPC imaging.

4.2 Dataset Description
The first ensemble consists of 3D reconstruction datasets of an artificial
specimen from simulated XCT [32] of the AC modality with intensities
between 0 and 65535. The size of each dataset is 128× 128× 128
voxels and the data type is unsigned short (see Figure 8a). The artificial
projection images are generated by calculating penetration lengths of
primary monochromatic X-rays through the specimen. The specimen
is represented by surface models of three cylinders, one sphere, and
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Fig. 5. Effect of the nonlinear scaling. (a) Constantly scaled 1D Hilbert
line plots of six 3D volumes. (b) nonlinearly scaled 1D Hilbert line plots
of the same six 3D volumes.

top of each other with a scaling widget in-between. An overview is pro-
vided through the nonlinearly scaled histogram heatmap visualization.
Background regions can be filtered out. If the user zooms into the chart,
details for each volume are provided through the 1D Hilbert line plots.
An orientation widget displays the size and position of the currently
visible chart area in light blue compared to the overall chart size, which
is shown in gray (see bottom of Figures 6 and 7). In addition, we enable
brushing and linking to immediately highlight the affected voxels or
Hilbert indices when performing a selection in the 1D Hilbert line plots
or in the 3D spatial view, respectively.

3.3.1 Interactive Histogram Heatmap Visualization

The histogram heatmap visualization provides an overview of the in-
tensity distribution in the volume ensemble. To be able to fit the full
volume into a chart with the width of the screen, we split the x-axis of
the nonlinearly scaled chart into intervals of equal width. Due to the
nonlinear scaling, the intervals may include a varying number of Hilbert
indices. For each interval we then compute a single histogram of the
intensities at the included Hilbert indices, over all ensemble members.
The single histogram is visualized as a heatmap through a vertical bar,
all histograms together form a histogram heatmap. The default width of
each histogram bar is 10 pixels, and by default each histogram has 64
bins. These parameters can be adapted by the user to best fit the size and
intensity distribution of the currently analyzed volumes. To improve the
performance in computing the histogram heatmap, we adapt a segment
tree [2]. A segment tree is a binary tree used for storing segments in
the range 0...n−1. Each node represents a segment and is assigned the
corresponding histogram. The segment of a leave node covers only one
Hilbert index (voxel), the segment of the root node covers all Hilbert
indices. The segment tree partitions an arbitrary interval into a minimal
set of segments (of varying sizes). With this, we avoid to compute the
histogram of an interval based on single voxels. Instead we combine
the histograms of the highest-level nodes, whose segments are included
in the requested interval. The root node of the segment tree contains the
entire segment [0,n−1]. A leaf node represents an elementary segment,
which corresponds to one Hilbert index, i.e., one voxel. It is assigned
the histogram of all the intensities at that voxel throughout the entire
volume ensemble. The internal nodes merge the segments of their child
nodes. The segment tree can be serialized using an array of size n−1.
The internal nodes are stored in the first half of the array, the leaf nodes
are stored in the second half of the array. The left child of each node at
index i can be found at index 2∗ i+1, the right child at index 2∗ i+2.
The segment tree is built bottom-up by taking the pairs of nodes with
indices (2 ∗ i+ 1,2 ∗ i+ 2) and aggregating their histograms into the
histogram of the parent at index i. The construction of the segment
tree is performed for every ensemble and takes O(n) time. In our case,
each node of the segment tree contains the histogram for a segment
of a certain contiguous range of Hilbert indices. A vertical bar of the

histogram heatmap is created by summing up each histogram of the
individual volumes. Due to the nonlinear scaling, many Hilbert indices
may be covered by a vertical bar of the histogram heatmap. Without the
segment tree, a histogram would have to be calculated from all these
Hilbert indices. With the segment tree, a histogram for a vertical bar
can be generated in O(logn) time, since only a few nodes need to be
traversed. The segment tree therefore supports efficient rescaling of the
charts.

In the figures in this paper, the extended black body scheme proposed
by Moreland [27] is used as color map for the histogram heatmap, but
other predefined color maps can be selected by the user. Figure 6 shows
an example histogram heatmap. White regions denote a high concen-
tration of intensities in a single bin. This is the case if all ensemble
members agree on a small range of intensities, i.e., if the variation is
low in that region. In contrast, a high variation is indicated by a broader
distribution in violet, red, and yellow colors from the middle of the
color map. The focus in XCT images is typically on regions containing
an object, therefore areas containing only background, i.e., air, are not
of interest and can be ignored for the analysis. The background areas,
where the intensities of all ensemble members are below a user-defined
threshold, are assigned a very low importance-value and therefore are
highly compressed in the nonlinear scaling. Setting the background
threshold is optional, a value of zero means that the background is
left out altogether. Instead of showing a histogram, these background
regions are depicted by light orange boxes. In this fashion, we can
identify interesting regions, i.e., those with high local variation, which
addresses Task 2 from Section 1.

3.3.2 Interactive 1D Hilbert Line Plot Visualization
In the 1D Hilbert line plots, for each volume, the intensities are plotted
on the y-axis over the Hilbert indices on the x-axis. Each plot is
assigned a distinctive color taken from the metro color scheme of
MaterialUI [1], as can be seen in Figure 7a. When zooming into the
histogram heatmap, the 1D Hilbert line plots are activated automatically
as soon as the range of currently visible Hilbert indices fits on the screen
without aggregation. The 1D Hilbert line plots can also be shown as
an overlay on the histogram heatmap. Specific ensemble members can
always be activated and deactivated by clicking on them in the legend.
The current mouse position is highlighted by a position marker line (the
orange line in Figure 7a and c), augmented with a tool-tip displaying the
Hilbert index and intensity at that position. For better visibility and to
better visually link the nonlinearly scaled and the linearly scaled chart,
this line is updated simultaneously in both charts. Visualizing two or
more 1D Hilbert line plots side by side enables a detailed analysis and
comparison of all ensemble members, addressing Task 1 and Task 4
from Section 1.

Dynamic Volume Lines provides several ways to select regions of in-
terest. The user can perform rectangular multi-selections directly in the
charts. Additionally, all Hilbert indices within a specified importance-
range can be selected by defining upper and lower bounds. Furthermore,
the user can perform a selection in the 3D spatial view, by marking a
rectangular region with a dragging interaction. This selects all voxels
inside of the cuboid region that is spanned by projecting the rectangle
from the near plane of the viewing frustum along the viewing direction
to the far plane. In either case, all intervals in the Hilbert line plot
falling into the selected region are highlighted. They are emphasized in
the scaling widget as well, and the respective regions in the selected
ensemble members are displayed in a separate 3D visualization. As
a result, different or similar areas in the ensemble of reconstruction
volumes can be identified and thus repeating patterns in the data (e.g.,
ring artifacts) can be exposed. This addresses Task 3 from Section 1.
Optionally, we provide an aggregated view of the individual 1D Hilbert
line plots using functional boxplots [39]. The functional boxplots show
statistical properties such as the lower and upper whisker, the median,
and the interquartile range (see Figure 1c).

3.3.3 Scaling Widget Visualization
Dynamic Volume Lines depicts a nonlinearly scaled chart at the top and
a constantly scaled chart at the bottom, both showing the histogram
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Fig. 6. The histogram heatmap overview visualization with the extended black body heatmap. White areas indicate a high concentration of intensities.
This is the case if all ensemble members agree on a small range of intensities, i.e., the variation in this region is low. A high variation is indicated by a
broader distribution in violet, red, and yellow. Light orange background areas hide the uninteresting intensities below 30000.
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Fig. 7. (a) The nonlinearly scaled chart shows the differently colored 1D Hilbert line plots for each volume. The intensities are plotted on the y-axis
over the Hilbert indeces on the x-axis. The current mouse position is highlighted by an orange position marker line, which shows the Hilbert index
and intensity at that position. (b) depicts the scaling widget, which emphasizes the nonlinear scaling. (c) shows the constantly scaled chart with the
individual 1D Hilbert line plots.

heatmap visualization as well as the Hilbert line plot visualization.
Early prototypes just had those two charts on top of each other. When
working with those early prototypes together with the domain experts,
we realized that an explicit visualization of the nonlinear scaling is
necessary. For this purpose, the current design includes the scaling
widget, as shown in Figure 7b. Each single histogram of the histogram
heatmap in the nonlinearly scaled chart is mapped to the corresponding
histogram in the constantly scaled chart. If the line plots are visible,
each Hilbert index in the nonlinearly scaled chart maps to the corre-
sponding index in the constantly scaled chart. Small rectangles at the
top of the scaling widget each represent a histogram or Hilbert index.
Their gray values encode the local ensemble variation. Black represents
a low variation, white a high variation. From these rectangles at the top,
trapezoids extend to the bottom. Their color is gradually shifting to an
average gray value, which represents the constant scaling applied in the
lower plot. The position marker line is also shown in the scaling widget,
linking the nonlinearly scaled chart at the top with the constantly scaled
chart at the bottom, as shown in Figure 7.

4 DATASETS

This section briefly explains how the industrial 3D X-ray computed to-
mography (XCT) data is acquired (see Section 4.1) and which datasets
are used (see Section 4.2).

4.1 Data Acquisition
XCT provides a volumetric representation of a scanned specimen. The
specimen is placed on a rotary table between the X-ray source and the
detector. While the specimen is rotating, the source emits cone-beam

X-rays. The detector collects the X-rays attenuated by the specimen.
The attenuation depends on the density and atomic number of the
material and on the penetration thickness of the specimen. The detector
converts the radiation intensity into a series of digital projection images.
In the reconstruction stage, an algorithm is applied on the projection
images in order to reconstruct the 3D volume of the specimen. Talbot-
Lau grating interferometer XCT (TLGI-XCT) delivers, in contrast to
conventional XCT, three complementary modalities, i.e., attenuation
contrast (AC), differential phase contrast (DPC), and dark-field contrast
(DFC) in a single scan. The three modalities are perfectly registered to
each other. AC provides information on the attenuation of the X-ray
beam intensity and thus is equivalent to conventional X-ray imaging.
DPC is related to the index of refraction and image contrast, which
is achieved by the local deflection of the X-ray beam. DFC reflects
the total amount of radiation scattered at small angles, e.g., caused by
microscopic structures in the sample like particles, pores, fibers, struts,
or cracks. In addition, the DFC modality produces a strong signal and
a high contrast at interfaces and reveals information that is undetected
by AC and DPC imaging.

4.2 Dataset Description
The first ensemble consists of 3D reconstruction datasets of an artificial
specimen from simulated XCT [32] of the AC modality with intensities
between 0 and 65535. The size of each dataset is 128× 128× 128
voxels and the data type is unsigned short (see Figure 8a). The artificial
projection images are generated by calculating penetration lengths of
primary monochromatic X-rays through the specimen. The specimen
is represented by surface models of three cylinders, one sphere, and
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Fig. 8. (a) 3D reconstruction dataset of the artificial specimen from
simulated XCT of the AC modality, (b) with an ROI cutout of a cube. (c)
shows an xy-slice view of the dataset without Gaussian smoothing. (d–h)
depict the xy-slice views of the five datasets with an increasing variance
of the Gaussian smoothing between 0.2 and 1.0.
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Fig. 9. (a) 3D reconstruction dataset of a real-world TLGI-XCT scanned
foam specimen of the DFC modality (b) with an ROI cutout. (c) shows an
xy-slice view of the FDK reconstructed reference dataset with ring arti-
facts in the center. (d–m) depict the xy-slice views of the SIRT datasets
with iteration parameters increasing from 10 to 700 exemplarily.

one cuboid. Attenuations are calculated by applying Lambert-Beer’s
law. The X-ray scatter and the blurring effects were disabled for the
simulation. The virtual projection images are processed using the FDK
reconstruction algorithm. We applied a Gaussian filter with increasing
smoothing effect to generate five additional volumes. No smoothing
was applied to the first dataset. The individual variances of the Gaussian
smoothing in the range [0.2, 1.0] are increased by a step of 0.2. In a
preprocessing step, a user-defined ROI is selected and applied to all
ensemble volumes (see Figure 8b). The resolution of the ROI cutouts
are 16× 16× 16 voxels. Figure 8c depicts an xy-slice of the dataset
without smoothing. Figures 8d–h show xy-slices of the different results
of the Gaussian smoothing filter.

The second ensemble consists of 16 datasets from a real-world open-
cell polyurethane foam specimen, which was scanned with a Bruker
Skyscan 1294 TLGI-XCT device at a resolution of 11.4 microns. The
size of each dataset is 550× 550× 250 voxels and the data type is
unsigned short. To compare the individual datasets, we normalized
the intensities (itk::NormalizeImageFilter) by setting the mean to zero
and the variance to one. We then rescale the intensities between 0
and 65535. Figure 9a shows the thin cell walls of the foam specimen,
which are revealed by the DFC modality. In the middle of the foam
specimen we cut out an ROI of 64×64×64 voxels (see Figure 9b).
Figure 9c depicts an xy-slice of the cutout reference dataset, which

was reconstructed from 900 projections using the FDK algorithm. The
center of Figure 9c shows ring artifacts. The other 15 datasets were
reconstructed using the simultaneous iterative reconstruction technique
(SIRT) [12] with 900 projections and the following increasing iteration
parameters: 10, 50, 100, 150,...,700. Figures 9d–m present the SIRT
volumes with increasing iteration parameters.

5 RESULTS

In this section we present two case studies that reflect the domain-
specific requirements and present the capabilities of Dynamic Volume
Lines. First, we analyze reconstruction data from the simulated XCT
specimen, and in our second case study, we analyze the real-world XCT
specimen.

5.1 Case study 1: Simulated XCT Dataset
The specimen analyzed here is an artificial dataset from simulated XCT
with three cylindrical bars orthogonal to each other (see Section 4.2).
Two of the bars have attachments at their ends, one of which is a sphere,
the other one is a cube. Different levels of smoothing produce a volume
ensemble, as shown in Figure 8. The ROI cutout for this analysis covers
the end of the bar with the attached cube, as shown in Figure 10a.

The analysis goal for this dataset mainly has been to determine
interesting regions, which correspond to areas where the most changes
happen in the ensemble. We use a synthetic dataset in order to show the
basic behavior of Dynamic Volume Lines under well-defined conditions.
We set a filter for regions with high local variations, in this case we
select an importance-range between 0.5 and 1. The 3D spatial view
displays the respective regions in each member, as can be seen in
Figure 10b. The voxels displayed there clearly indicate that the regions
with most changes are located at the edges of the cube. The selection
also gets highlighted in the nonlinearly scaled Hilbert line plot and
the scaling widget shown in Figure 10c and 10d. The scaling widget
visualizes the importance through the color coding (white to light-gray
for the selection) and by the trapezoidal shapes, which are much broader
at the top row as compared to the bottom. The background threshold
is set to 30000. Intensities below this threshold correspond to air and
are not of interest for this analysis. Figure 10c shows these background
regions, which are marked with light orange boxes. The parameter p
to influence the nonlinear scaling (see Section 3.2, Equation 2) is set
to 1.4. For this dataset, this setting ensures a good balance between
emphasizing regions with high variances, but still keeping background
regions and regions with low variances visible.

5.2 Case study 2: Real-world XCT Dataset
We analyze the ensemble of 16 volumes from the foam specimen (see
Section 4.2) as shown in Figure 9. Each volume of the ensemble
is represented by a Hilbert curve of length 262144. The histogram
heatmap displayed in Figure 11a shows that there is a broad variation
in the lower intensities, indicated by the white region. There are less
intensities in the upper range, and the histogram colors indicate lower
frequencies there. This implies that most of the space is occupied by
voids, the remaining space is left to the cell walls. It is also a hint that
some volumes do not represent the cell walls very well.

When zooming in and viewing the 1D Hilbert line plots as shown
in Figure 11b, one can see at a glance that the volumes differ vastly in
their local intensity variation. The ensemble member corresponding to
the bottom, dark green Hilbert line plot is nearly flat, indicating a low
contrast of the intensities. The topmost, light-green plot shows highly
varying intensities, revealing a high contrast. Figure 11c gives the
functional boxplots of the 1D Hilbert line plots (shown in Figure 11b).
The gray colored interquartile range covers the volumes with iterations
from 250 to 650. The volume with 500 iterations is the median. In
areas of low local intensity variation, the minimum and maximum of
the functional boxplots are very close to each other. The background
threshold is set to zero, because in this analysis scenario we are inter-
ested in low intensities as well. Since there is no compression due to
the background, there are more voxels competing for available screen
space. The parameter p to influence the nonlinear scaling (see Sec-
tion 3.2, Equation 2) is increased to 2 in order to compress regions
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Fig. 10. (a) 3D rendering of the volume without smoothing. (b) 3D volume renderings of the selected voxels for all six ensemble members. (c)
Corresponding Hilbert line plots with highly important regions selected. (d) Scaling widget with selection highlighted in red.

with low variance more and to expand interesting regions with high
variance.

We select regions with an importance-value between 0.1 and 1 (high
variation of the intensities). As can be seen in Figure 11d, only the cell
walls show such high variations. Based on the importance-function, the
cell walls can be separated easily. The selected indices are highlighted
in the scaling widget shown in Figure 11e. Inspecting the Hilbert line
plots (see Figure 11b) and the 3D views of the different parameter
variations (see Figure 11d), we can see that the volumes produced by
the SIRT algorithm with less than 250 iterations result in low contrast
between cell walls and voids. Starting from approximately 350 iter-
ations, the contrast converges to the FDK reference volume. Since
doubling the number of iterations also means doubling the required re-
construction time, we can conclude that we can stop the reconstruction
at 400 iterations without a major loss of accuracy.

When selecting regions with a low importance-value between 0 and
0.001 (low variation of intensities), the ring artifacts are selected, as
shown in Figure 11f. This indicates that the SIRT iterations do not
suppress the ring artifacts. Both FDK and SIRT are affected by them
in exactly the same way. The importance-function could therefore
be used to detect such artifacts. They are the only features in the
volumes, which show only little variation with different reconstruction
parameters. Figure 11g shows in the Hilbert line plots that in the
lower intensity range there is in general a low variation in all the
volumes. There is even less variation in the highlighted regions of the
ring artifacts. We therefore hypothesize that there is potential to use the
local ensemble variation to develop a ring-artifact reduction algorithm
for the reconstructed volumes. This is an insight that would not have
been possible without the knowledge gained from the analysis with
Dynamic Volume Lines.

5.3 Performance Measurements
The experiments were performed on a desktop machine with an Intel(R)
Core(TM) i7-3770 CPU, 32 GB RAM and an NVIDIA GeForce GTX
1080 with 8 GB RAM. The Dynamic Volume Lines were implemented
in C++. ITK 4.9 has been used to perform basic image processing,
to load the datasets, and to generate the Hilbert curves [41]. The 3D
views were rendered with VTK 7.0. The histogram heatmap and the
1D Hilbert line plots were built with the QCustomPlot 2.0 library [5].
The scaling widget was implemented in Qt 5.8.

Computing the Hilbert curves for example for 16 datasets with a size
of 64×64×64 voxels (see Figure 8) takes approximately 12 seconds.
This includes creating the nonlinear scaling, building the segment tree,
and the initial rendering of the charts. Dragging and zooming within
the charts works in real-time. The performance of selecting 1D Hilbert

line plots and rendering the corresponding 3D views depends on the
number of chosen line segments and on the number of chosen volumes,
but typically takes less than 5 seconds.

6 CONCLUSION AND FUTURE WORK

In this paper we introduce Dynamic Volume Lines for the interactive
visual analysis and comparison of ensembles of 3D volumes using
1D Hilbert line plots. Volumes are linearized along a space-filling
Hilbert curve. We introduce an aggregate overview visualization for
volume ensembles as a histogram heatmap, which encodes the intensity
frequencies. We provide nonlinear scaling to emphasize regions with
high local variation, and to optimally utilize the available screen space.
We illustrate the scaling in an interactive scaling widget. We investigate
the usefulness of Dynamic Volume Lines with two case studies. Using
a simulated XCT dataset, we investigate the general usefulness of the
tool in detecting local variations in the ensemble. On a real-world
foam dataset we showed that our importance-function, based on local
variations, can be used to detect structures such as cell walls, and to
discover unwanted ring artifacts.

Our domain expert collaborators were very positive about the possi-
bility to compare multiple volumes at once, as they previously had no
comprehensive tool available to support this analysis scenario. They
also positively mentioned the guidance towards interesting regions, i.e.,
areas with high local variations. It was important for them to be able to
investigate selected regions in more detail, and to retain the relation to
the spatial domain. This allowed them to draw conclusions and gain
insights for adaptations in their algorithm development.

Due to a technical implementation detail, the current prototype limits
the maximum region of interest that can be analyzed to 256×256×256
voxels. We are confident that with minor adaptations this limitation can
be removed to support the analysis of much larger volumes. In general,
the concept of representing an ensemble of volumes as nonlinear 1D
Hilbert line plots is not limited to 3D space, but can also be applied to
(abstract) n-dimensional spaces.
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Fig. 8. (a) 3D reconstruction dataset of the artificial specimen from
simulated XCT of the AC modality, (b) with an ROI cutout of a cube. (c)
shows an xy-slice view of the dataset without Gaussian smoothing. (d–h)
depict the xy-slice views of the five datasets with an increasing variance
of the Gaussian smoothing between 0.2 and 1.0.
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Fig. 9. (a) 3D reconstruction dataset of a real-world TLGI-XCT scanned
foam specimen of the DFC modality (b) with an ROI cutout. (c) shows an
xy-slice view of the FDK reconstructed reference dataset with ring arti-
facts in the center. (d–m) depict the xy-slice views of the SIRT datasets
with iteration parameters increasing from 10 to 700 exemplarily.

one cuboid. Attenuations are calculated by applying Lambert-Beer’s
law. The X-ray scatter and the blurring effects were disabled for the
simulation. The virtual projection images are processed using the FDK
reconstruction algorithm. We applied a Gaussian filter with increasing
smoothing effect to generate five additional volumes. No smoothing
was applied to the first dataset. The individual variances of the Gaussian
smoothing in the range [0.2, 1.0] are increased by a step of 0.2. In a
preprocessing step, a user-defined ROI is selected and applied to all
ensemble volumes (see Figure 8b). The resolution of the ROI cutouts
are 16× 16× 16 voxels. Figure 8c depicts an xy-slice of the dataset
without smoothing. Figures 8d–h show xy-slices of the different results
of the Gaussian smoothing filter.

The second ensemble consists of 16 datasets from a real-world open-
cell polyurethane foam specimen, which was scanned with a Bruker
Skyscan 1294 TLGI-XCT device at a resolution of 11.4 microns. The
size of each dataset is 550× 550× 250 voxels and the data type is
unsigned short. To compare the individual datasets, we normalized
the intensities (itk::NormalizeImageFilter) by setting the mean to zero
and the variance to one. We then rescale the intensities between 0
and 65535. Figure 9a shows the thin cell walls of the foam specimen,
which are revealed by the DFC modality. In the middle of the foam
specimen we cut out an ROI of 64×64×64 voxels (see Figure 9b).
Figure 9c depicts an xy-slice of the cutout reference dataset, which

was reconstructed from 900 projections using the FDK algorithm. The
center of Figure 9c shows ring artifacts. The other 15 datasets were
reconstructed using the simultaneous iterative reconstruction technique
(SIRT) [12] with 900 projections and the following increasing iteration
parameters: 10, 50, 100, 150,...,700. Figures 9d–m present the SIRT
volumes with increasing iteration parameters.

5 RESULTS

In this section we present two case studies that reflect the domain-
specific requirements and present the capabilities of Dynamic Volume
Lines. First, we analyze reconstruction data from the simulated XCT
specimen, and in our second case study, we analyze the real-world XCT
specimen.

5.1 Case study 1: Simulated XCT Dataset
The specimen analyzed here is an artificial dataset from simulated XCT
with three cylindrical bars orthogonal to each other (see Section 4.2).
Two of the bars have attachments at their ends, one of which is a sphere,
the other one is a cube. Different levels of smoothing produce a volume
ensemble, as shown in Figure 8. The ROI cutout for this analysis covers
the end of the bar with the attached cube, as shown in Figure 10a.

The analysis goal for this dataset mainly has been to determine
interesting regions, which correspond to areas where the most changes
happen in the ensemble. We use a synthetic dataset in order to show the
basic behavior of Dynamic Volume Lines under well-defined conditions.
We set a filter for regions with high local variations, in this case we
select an importance-range between 0.5 and 1. The 3D spatial view
displays the respective regions in each member, as can be seen in
Figure 10b. The voxels displayed there clearly indicate that the regions
with most changes are located at the edges of the cube. The selection
also gets highlighted in the nonlinearly scaled Hilbert line plot and
the scaling widget shown in Figure 10c and 10d. The scaling widget
visualizes the importance through the color coding (white to light-gray
for the selection) and by the trapezoidal shapes, which are much broader
at the top row as compared to the bottom. The background threshold
is set to 30000. Intensities below this threshold correspond to air and
are not of interest for this analysis. Figure 10c shows these background
regions, which are marked with light orange boxes. The parameter p
to influence the nonlinear scaling (see Section 3.2, Equation 2) is set
to 1.4. For this dataset, this setting ensures a good balance between
emphasizing regions with high variances, but still keeping background
regions and regions with low variances visible.

5.2 Case study 2: Real-world XCT Dataset
We analyze the ensemble of 16 volumes from the foam specimen (see
Section 4.2) as shown in Figure 9. Each volume of the ensemble
is represented by a Hilbert curve of length 262144. The histogram
heatmap displayed in Figure 11a shows that there is a broad variation
in the lower intensities, indicated by the white region. There are less
intensities in the upper range, and the histogram colors indicate lower
frequencies there. This implies that most of the space is occupied by
voids, the remaining space is left to the cell walls. It is also a hint that
some volumes do not represent the cell walls very well.

When zooming in and viewing the 1D Hilbert line plots as shown
in Figure 11b, one can see at a glance that the volumes differ vastly in
their local intensity variation. The ensemble member corresponding to
the bottom, dark green Hilbert line plot is nearly flat, indicating a low
contrast of the intensities. The topmost, light-green plot shows highly
varying intensities, revealing a high contrast. Figure 11c gives the
functional boxplots of the 1D Hilbert line plots (shown in Figure 11b).
The gray colored interquartile range covers the volumes with iterations
from 250 to 650. The volume with 500 iterations is the median. In
areas of low local intensity variation, the minimum and maximum of
the functional boxplots are very close to each other. The background
threshold is set to zero, because in this analysis scenario we are inter-
ested in low intensities as well. Since there is no compression due to
the background, there are more voxels competing for available screen
space. The parameter p to influence the nonlinear scaling (see Sec-
tion 3.2, Equation 2) is increased to 2 in order to compress regions
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Fig. 10. (a) 3D rendering of the volume without smoothing. (b) 3D volume renderings of the selected voxels for all six ensemble members. (c)
Corresponding Hilbert line plots with highly important regions selected. (d) Scaling widget with selection highlighted in red.

with low variance more and to expand interesting regions with high
variance.

We select regions with an importance-value between 0.1 and 1 (high
variation of the intensities). As can be seen in Figure 11d, only the cell
walls show such high variations. Based on the importance-function, the
cell walls can be separated easily. The selected indices are highlighted
in the scaling widget shown in Figure 11e. Inspecting the Hilbert line
plots (see Figure 11b) and the 3D views of the different parameter
variations (see Figure 11d), we can see that the volumes produced by
the SIRT algorithm with less than 250 iterations result in low contrast
between cell walls and voids. Starting from approximately 350 iter-
ations, the contrast converges to the FDK reference volume. Since
doubling the number of iterations also means doubling the required re-
construction time, we can conclude that we can stop the reconstruction
at 400 iterations without a major loss of accuracy.

When selecting regions with a low importance-value between 0 and
0.001 (low variation of intensities), the ring artifacts are selected, as
shown in Figure 11f. This indicates that the SIRT iterations do not
suppress the ring artifacts. Both FDK and SIRT are affected by them
in exactly the same way. The importance-function could therefore
be used to detect such artifacts. They are the only features in the
volumes, which show only little variation with different reconstruction
parameters. Figure 11g shows in the Hilbert line plots that in the
lower intensity range there is in general a low variation in all the
volumes. There is even less variation in the highlighted regions of the
ring artifacts. We therefore hypothesize that there is potential to use the
local ensemble variation to develop a ring-artifact reduction algorithm
for the reconstructed volumes. This is an insight that would not have
been possible without the knowledge gained from the analysis with
Dynamic Volume Lines.

5.3 Performance Measurements
The experiments were performed on a desktop machine with an Intel(R)
Core(TM) i7-3770 CPU, 32 GB RAM and an NVIDIA GeForce GTX
1080 with 8 GB RAM. The Dynamic Volume Lines were implemented
in C++. ITK 4.9 has been used to perform basic image processing,
to load the datasets, and to generate the Hilbert curves [41]. The 3D
views were rendered with VTK 7.0. The histogram heatmap and the
1D Hilbert line plots were built with the QCustomPlot 2.0 library [5].
The scaling widget was implemented in Qt 5.8.

Computing the Hilbert curves for example for 16 datasets with a size
of 64×64×64 voxels (see Figure 8) takes approximately 12 seconds.
This includes creating the nonlinear scaling, building the segment tree,
and the initial rendering of the charts. Dragging and zooming within
the charts works in real-time. The performance of selecting 1D Hilbert

line plots and rendering the corresponding 3D views depends on the
number of chosen line segments and on the number of chosen volumes,
but typically takes less than 5 seconds.

6 CONCLUSION AND FUTURE WORK

In this paper we introduce Dynamic Volume Lines for the interactive
visual analysis and comparison of ensembles of 3D volumes using
1D Hilbert line plots. Volumes are linearized along a space-filling
Hilbert curve. We introduce an aggregate overview visualization for
volume ensembles as a histogram heatmap, which encodes the intensity
frequencies. We provide nonlinear scaling to emphasize regions with
high local variation, and to optimally utilize the available screen space.
We illustrate the scaling in an interactive scaling widget. We investigate
the usefulness of Dynamic Volume Lines with two case studies. Using
a simulated XCT dataset, we investigate the general usefulness of the
tool in detecting local variations in the ensemble. On a real-world
foam dataset we showed that our importance-function, based on local
variations, can be used to detect structures such as cell walls, and to
discover unwanted ring artifacts.

Our domain expert collaborators were very positive about the possi-
bility to compare multiple volumes at once, as they previously had no
comprehensive tool available to support this analysis scenario. They
also positively mentioned the guidance towards interesting regions, i.e.,
areas with high local variations. It was important for them to be able to
investigate selected regions in more detail, and to retain the relation to
the spatial domain. This allowed them to draw conclusions and gain
insights for adaptations in their algorithm development.

Due to a technical implementation detail, the current prototype limits
the maximum region of interest that can be analyzed to 256×256×256
voxels. We are confident that with minor adaptations this limitation can
be removed to support the analysis of much larger volumes. In general,
the concept of representing an ensemble of volumes as nonlinear 1D
Hilbert line plots is not limited to 3D space, but can also be applied to
(abstract) n-dimensional spaces.
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Fig. 11. (a) Histogram heatmap of the foam volumes ensemble showing most intensities in the lower range. (b) 1D Hilbert line plots zoom-in, enabling
a detailed comparison of the reconstruction volumes. (c) Functional boxplots of the 1D Hilbert line plots in (b). (d) 3D views of regions with selected
high importance, coinciding with the foam cell walls. (e) Regions of high importance as in (d), selected in the 1D Hilbert line plots. (f) 3D views of
regions with selected low importance, coinciding with the ring artifacts. (g) Regions of low importance as in (f), selected in the 1D Hilbert line plots.
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Fig. 11. (a) Histogram heatmap of the foam volumes ensemble showing most intensities in the lower range. (b) 1D Hilbert line plots zoom-in, enabling
a detailed comparison of the reconstruction volumes. (c) Functional boxplots of the 1D Hilbert line plots in (b). (d) 3D views of regions with selected
high importance, coinciding with the foam cell walls. (e) Regions of high importance as in (d), selected in the 1D Hilbert line plots. (f) 3D views of
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[7] B. Fröhler, T. Möller, and C. Heinzl. GEMSe: Visualization-Guided Ex-
ploration of Multi-channel Segmentation Algorithms. Computer Graphics
Forum, 35(3):191–200, 2016. doi: 10.1111/cgf.12895

[8] M. G. Genton, C. Johnson, K. Potter, G. Stenchikov, and Y. Sun. Surface
boxplots. Stat, 3(1):1–11, 2014. doi: 10.1002/sta4.39

[9] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D. Hansen, and J. C.
Roberts. Visual Comparison for Information Visualization. Information
Visualization, 10(4):289–309, 2011. doi: 10.1177/1473871611416549

[10] R. Gosselin and D. Rodrigue. Cell morphology analysis of high density
polymer foams. Polymer Testing, 24(8):1027 – 1035, 2005. doi: 10.1016/j
.polymertesting.2005.07.005

[11] C. Gotsman and M. Lindenbaum. On the metric properties of discrete
space-filling curves. In Proceedings of the 12th IAPR International Confer-
ence on Pattern Recognition, vol. 3, pp. 98–102, 1994. doi: 10.1109/ICPR
.1994.577130

[12] J. Gregor and T. Benson. Computational Analysis and Improvement of
SIRT. IEEE Transactions on Medical Imaging, 27(7):918–924, 2008. doi:
10.1109/TMI.2008.923696

[13] C. H. Hamilton and A. Rau-Chaplin. Compact Hilbert Indices for Multi-
Dimensional Data. In 1st International Conference on Complex, Intelligent
and Software Intensive Systems, pp. 139–146, 2007. doi: 10.1109/CISIS.
2007.16

[14] C. H. Hamilton and A. Rau-Chaplin. Compact Hilbert Indices: Space-
filling Curves for Domains with Unequal Side Lengths. Information
Processing Letters, 105(5):155–163, 2008. doi: 10.1016/j.ipl.2007.08.
034

[15] C. Heinzl and S. Stappen. STAR: Visual Computing in Materials Science.
Computer Graphics Forum, 36(3):647–666, 2017. doi: 10.1111/cgf.13214

[16] M. Jarema, I. Demir, J. Kehrer, and R. Westermann. Comparative visual
analysis of vector field ensembles. In IEEE Visual Analytics Science and
Technology, pp. 81–88, 2015. doi: 10.1109/VAST.2015.7347634

[17] I. Jerjen, V. Revol, P. Schuetz, C. Kottler, R. Kaufmann, T. Luethi, K. Jefi-
movs, C. Urban, and U. Sennhauser. Reduction of phase artifacts in differ-
ential phase contrast computed tomography. Optics Express, 19(14):13604–
13611, 2011. doi: 10.1364/OE.19.013604
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[22] K. Matković, D. Gracanin, B. Klarin, and H. Hauser. Interactive Visual
Analysis of Complex Scientific Data As Families of Data Surfaces. IEEE
Transactions on Visualization and Computer Graphics, 15(6):1351–1358,
2009. doi: 10.1109/TVCG.2009.155

[23] P. Mindek, G. Mistelbauer, E. Gröller, and S. Bruckner. Data-sensitive
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Abstract
We present visual analysis methods for the evaluation of tomographic fiber reconstruction algorithms by means of analysis,
visual debugging and comparison of reconstructed fibers in materials science. The methods are integrated in a tool (FIAKER)
that supports the entire workflow. It enables the analysis of various fiber reconstruction algorithms, of differently parameterized
fiber reconstruction algorithms and of individual steps in iterative fiber reconstruction algorithms. Insight into the performance
of fiber reconstruction algorithms is obtained by a list-based ranking interface. A 3D view offers interactive visualization
techniques to gain deeper insight, e.g., into the aggregated quality of the examined fiber reconstruction algorithms and
parameterizations. The tool was designed in close collaboration with researchers who work with fiber-reinforced polymers on a
daily basis and develop algorithms for tomographic reconstruction and characterization of such materials. We evaluate the tool
using synthetic datasets as well as tomograms of real materials. Five case studies certify the usefulness of the tool, showing that
it significantly accelerates the analysis and provides valuable insights that make it possible to improve the fiber reconstruction
algorithms. The main contribution of the paper is the well-considered combination of methods and their seamless integration
into a visual tool that supports the entire workflow. Further findings result from the analysis of (dis-)similarity measures for
fibers as well as from the discussion of design decisions. It is also shown that the generality of the analytical methods allows a
wider range of applications, such as the application in pore space analysis.

Keywords
Simulation, parameter space analysis, ensemble visualization, industrial CT

1. Introduction

Fiber-reinforced polymers (FRPs) are in high demand for a num-
ber of manufacturing industries such as automobile or aeronautics,
since they provide high strength, durability, and elasticity while be-
ing lightweight. To ascertain and optimize the targeted application-
specific properties of FRPs, material scientists need to be able to
quantify and model the characteristics especially of the reinforce-
ment components, i.e., fibers. Important characteristics of a fiber
are, for example, start and end point, center point, direction, length
and diameter. A typical method to determine the fiber characteris-
tics is acquiring images of an FRP specimen using X-ray Computed
Tomography (CT) [KH18], and then applying customized data pro-
cessing pipelines to extract the fibers and their characteristics. An
overview of such methods as well as on existing analysis and visu-
alization tools is given in Section 2.

In multiple discussions with our collaborators, both developers
of fiber characterization algorithms and domain scientists using

these algorithms, we found that there is a great need for a spe-
cialized tool for the analysis and comparison of algorithms for de-
termining fiber characteristics. Our collaborators typically employ
generic visualization tools, custom quantification scripts, written
for example in MATLAB or Python, or resort to a manual analysis
in specific cases. Each of these methods is tailored to the output
format of the analyzed algorithm. Furthermore, these methods re-
quire prior domain knowledge, e.g., when setting up specific visu-
alization pipelines in the generic tools, or when developing custom
quantification scripts. Finally, each of these methods requires a con-
siderable amount of time to set up, and does not provide inherent
possibilities for comparing multiple datasets.

When analyzing the requirements of our collaborators, we found
that they require support regarding the following analysis tasks:

1. to compare multiple results, specifically,
a. to quantitatively compare average accuracy between results
b. to qualitatively compare visual representations of results
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2. to explore and identify fibers with specific properties, such as
a. fibers growing too long in the optimization
b. undiscovered or wrongly matched fibers

3. to visually investigate the influences of
a. the input data itself (fiber and dataset characteristics),
b. the input parameters (of the acquisition or fiber characteriza-

tion pipeline); and finally
4. to easily create visualizations to communicate the results via sci-

entific publications, presentations and posters.

In an iterative design process we then started designing and de-
veloping methods to address these tasks. In each step of the itera-
tion, we discussed prototypes of our methods with our collabora-
tors and let them experiment with these prototypes on their own
data. Based on their feedback, we refined our methods. The final
prototype implementing these methods is the tool for FIber recon-
struction Algorithm (K/)Comparison and ExploRation (FIAKER),
described in this paper.

We see our contributions in the methods and tools for analyzing
fiber characterization algorithms, which we describe in Section 4. A
further contribution is the evaluation of these methods in Section 5,
where we analyze some synthetic and real world datasets with our
methods, and indicate how they speed up the analysis of fiber re-
construction algorithms. An additional contribution described there
is the evaluation of a variety of fiber dissimilarity measures, as well
as explanations how to apply our methods in the similar scenario
of analyzing pore characterization algorithms. Section 6 provides
a discussion of the design decisions and the lessons learned during
the design of FIAKER.

2. Background and Related Work

Figure 1 shows a schematic of pipelines for determining fiber char-
acteristics from data acquired by CT. Conventional pipelines fol-
low a sequential approach. In the CT device, X-rays are attenuated
by a specimen (a) to generate projection images from multiple an-
gles (b). From the set of acquired projections, a 3D image is re-
constructed (c). Then, a variety of image processing steps are per-
formed to extract and segment the individual fibers (d). In the last
step, the characteristics of each segmented fiber are determined (e).
Examples of such types of pipelines are presented in the works of
Salaberger et al. [SKK∗11,SJKK15]. More recently, techniques for
a direct extraction of fiber characteristics from CT projection data
have been proposed. For example, Elberfeld et al. [Edd∗18] recon-
struct volumes from a small numbers of projection angles and then
estimate position, direction and length of the contained fibers using
a priori knowledge of their shape, modeled as a geometric repre-
sentation. This direct step is indicated by the red arrow from (b)
to (e) in Figure 1. The estimates are then iteratively improved by
minimizing the error that results when comparing with the origi-
nal projection images. Konopczyńsky et al. [KRR∗18] show that
applying deep neural networks also can deliver reasonable results.
However, a significant amount of time has to be invested for train-
ing these networks on synthetic and real-world data.

We refer to the outcome of a single parameterization of a specific
fiber characterization pipeline as a result. We use the term ensemble
to refer to multiple results from either different parameterizations

(a) (b)

(c)(d)(e)

CharacteristicsF
ibers

Figure 1: Schematic of fiber characterization pipelines: A spec-
imen (a) is scanned via computed tomography, the scanned pro-
jection images (b) are reconstructed to a 3D volume (c), which is
segmented (d). The characteristics of each fiber (e) are quantified
either from the segmented data or from the projection images.

of the same pipeline or from different pipelines. When develop-
ing a new fiber characterization algorithm, one typically starts with
a synthetic dataset: a ground truth with a known characterization
result, which we will refer to as reference. In the analysis, the ref-
erence is part of the ensemble.

The use of visualization techniques to optimize these algorithms
can be considered as visual parameter space analysis (VPSA) as
proposed by Sedlmair et al. [SHB∗14]. In the typical VPSA sce-
nario, for each result a fixed number of global quality measures is
computed. While average measures for a result can also be com-
puted in our case, we require new approaches for analyzing and
comparing the single fibers and their characteristics.

For the analysis of a single result, the methods by Fritz et al.
[FHG∗09] as well as by Weissenböck et al. [WAL∗14] can pro-
vide insights into the distribution of fiber characteristics. Yet their
methods are not suited to analyze details of the algorithms, such
as intermediate steps from iterative algorithms. Furthermore, these
methods only deal with a single result and cannot help in com-
paring multiple results or in analyzing the differences between a
result and the reference. Zhang et al. [ZFS∗19] provide similar ca-
pabilities for the analysis of the formation of bubbles in porous
media. They analyze multiple similar pores, in volumetric data ac-
quired via computed tomography. As their method enables the user
to compare pores inside a dataset with each other, it is also targeted
at analyzing a single result.

The algorithms we analyzed, model the fibers as straight cylin-
ders. For 3D visualization, we therefore create triangle meshes
in appropriate detail. Tools such as YMCA by Schmidt et al.
[SPA∗14] or DreamLens by Matejka et al. [MGB∗18] are similar as
they compare multiple 3D shapes. However, they are not required
in our context because we only need the meshes for qualitative in-
spection and visual comparison. For the analysis of more general
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polytopes, Torsney-Weir et al. [TWMSK18] explore the concept of
1D slicing. Their methods target the comparison of polytopes with
more than three dimensions, and do not provide means to compare
additional characteristics associated with these polytopes.

To match the fibers of the different results, we compute their
similarity. For this purpose, we employ fiber similarity measures.
Such measures are also used in the imaging of white brain mat-
ter through diffusion magnetic resonance imaging (dMRI). For ex-
ample O’Donnel and Westin [OW07] employ a distance based on
the mean closest point distance between two fibers. Quan and Vo
[QV15] propose a measure based on the center of mass as well as
the start and end point of each fiber. Bhattacharya et al. [BWW∗17]
employ distance measures for the clustering of fiber tracts of in-
dustrial fiber-reinforced materials into fiber bundles. While these
measures are designed for clustering similar fibers, we are inter-
ested in determining matches of the same underlying fiber in dif-
ferent datasets. In our case, the ideal distance measure therefore
must always rank the pair of best-matching fibers first, while for the
use cases cited above, the absolute order is not that crucial. Analo-
gously to Labra et al. [LGD∗17], we utilize multiple measures with
differing accuracy and performance in order to speed up our com-
putations. While in dMRI (for an overview see e.g., Schultz and
Vilanova [SV18]) the input data are tensor fields or more general
orientation fields from which the fibers have to be reconstructed
with numerical methods, in our case the individual fibers are ex-
plicitly given.

3. Fiber Dissimilarity Measures

For analysis purposes, we need to determine which fiber in the pre-
defined reference matches best a particular fiber in a result. This
requires measuring the dissimilarity of fibers in the reference and
the result, as shown in Figure 4(c). We considered and implemented
a number of different fiber dissimilarity measures:

1. Measures based on differences in the characteristics
2. Measures based on fiber point distances
3. Measures based on fiber overlap

The first category measures the dissimilarity through the differ-
ence in the fiber characteristics: the fiber center, the direction as
azimuth (φ) and elevation (θ) angles in a spherical coordinate sys-
tem, as well as the length of the fiber. The fiber dissimilarity can
then be computed as the Euclidean distance in the 6-dimensional
space spanned by these six fiber characteristics. Let us assume we
are analyzing a result where for each fiber a we have the fiber center
as a position vector ca, its orientation angles φa and θa as well as
the fiber length la, as shown in Figure 2(a). With fa = (ca,φa,θa, la)
being the 6-dimensional vector of all those feature characteristics,
the dissimilarity between fiber a and b is computed as

ďc
1(a,b) = ‖fa− fb‖2 , (1)

where ‖‖2 denotes the Euclidean distance. This measure is used
in the evaluation of the optimizing algorithm by Elberfeld et al.
[Edd∗18]. The problem with this measure is that the components of
the vectors have different physical dimensions and are therefore not
comparable. A methodically clean way would be the introduction
of weight factors.

For this reason, we have also experimented with a normalized
measure, in which we form a weighted sum of the Euclidean dis-
tance of the center points and the absolute differences of the other
characteristics, the weights being used to normalize each term by
its maximum possible value, so as not to over-emphasize a single
characteristic. This dissimilarity measure is given as

(2)ďc
2(a,b) =

1
4
(
w1 · ‖ca − cb‖2 + w2

· |φa − φb|+w3 · |θa − θb|+w4 · |la − lb|
)
.

Here the coefficient w1 is the inverse of the diagonal length of the
bounding box containing the fibers from all results, w2 and w3 are
the inverses of the maximum possible differences between two φ
and θ angles, respectively, and w4 is the inverse of the difference
between the shortest and the longest fiber in all results.

We also evaluated three dissimilarity measures considering fiber
point distances. The first is computed as the sum of the Euclidean
distances between start, end and center points of two fibers:

ďp
1 (a,b) = ∑

i∈(s,c,e)
‖ia− ib‖2 , (3)

where s, c and e denote the start positions, centers and end positions
of fibers a and b, respectively.

The measures introduced so far are not invariant to a rotation of
one fiber by 180 degrees – meaning that even if fiber b in the re-
sult is exactly matching fiber a, but a is specified rotated by 180
degrees with respect to b, these measures will tell us that there is a
high difference between them. As the result of structural analyses
does not differ for these two cases, they should be considered equal
in our tool as well. Therefore, we need to compute these distances
twice, once as defined above, and a second time with the start and
end position vectors for fiber b exchanged, or, for measures dc

1 and
dc

2, with direction angles φ and θ rotated by 180 degrees. The re-
sulting fiber is denoted as b−. We then use the minimum of the two
distances as final measure

d(a,b) = min(ď(a,b), ď(a,b−)). (4)

We always use ď as an indicator that the metric d is afflicted by this
orientation dependency issue.

In an attempt to overcome this limitation, we analyzed a second
measure based on point distances, namely the sum of distances be-
tween all pairs of these three points:

dp
2 (a,b) = ∑

i∈(s,c,e)
∑

j∈(s,c,e)
‖ia− jb‖2 . (5)

While this measure is not affected by the direction of the fibers, it
does come with the disadvantage of being dependent on the fiber
length. It cannot trivially be normalized to correct for this depen-
dency on the fiber length.

We then sought a more mathematically grounded dissimilarity
measure and came up with a measure based on the (square of) the
average distance of corresponding points along the two fibers a and
b. It leads to the measure

ďp
3 (a,b) =

√
‖sa− sb‖2 +‖ea− eb‖2 +(sa− sb) · (ea− eb). (6)
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Fiber a

Fiber b

(a) (b)

ea

sa
ca

la

da

Figure 2: Fiber characteristics (a): Start point sa, center point ca,
end point ea, length la, diameter da. Overlap-based dissimilarity
measure computation (b): Points in reference are sampled, checked
for inclusion in result fiber, result is the ratio between included and
total.

We can see that it depends only on the Euclidean distances between
start and end points in R3, as well as the angle between the vectors
sa− sb and ea− eb. This measure is also subject to the orientation
dependency issue; therefore the final distance is again computed
with the help of Equation 4.

We also considered dissimilarity measures based on volume
overlap. To compute them, we follow the procedure schematically
depicted in Figure 2(b): We first sample a collection pa of random
points inside the cylinder of fiber a. We then count how many of
those points are contained in the cylinder representing fiber b. The
overlap is then defined as

o(a,b) =
c(pa,b)

#pa
, (7)

where c(pa,b) denotes the count of points in pa that are contained
in the cylinder of fiber b, while #pa stands for the cardinality of pa,
i.e., the number of sampled points.

In an attempt to create a symmetric measure, we always sample
the fiber with less volume, and check inclusion in the fiber with
higher volume, since a cylinder with larger volume can never be
fully included in one with a smaller volume. This leads to our first
definition of an overlap-based dissimilarity measure as

do
1(a,b) = 1−

{
o(a,b) for v(a)< v(b)
o(b,a) otherwise

, (8)

where v(a) denotes the volume of fiber a. This measure might be
sufficient for some cases, but it delivers a dissimilarity of 0 when-
ever one fiber is fully contained within the other one. The contained
fiber could however be much smaller than the other. Therefore, we
need to accommodate for their volume ratio, leading to a second
overlap-based dissimilarity measure

do
2(a,b) = 1−





v(a)
v(b)o(a,b) for v(a)< v(b)
v(b)
v(a)o(b,a) otherwise

. (9)

We also experimented with the non-symmetric version of this
metric, where we always compute the overlap in a specific direction

do
3(a,b) = 1−o(a,b)





v(a)
v(b) for v(a)< v(b)
v(b)
v(a) otherwise

. (10)

As noted above, these dissimilarity measures are used to com-
pute the dissimilarity of fibers in the results to fibers in the refer-
ence result. A low value always indicates low dissimilarity, a value
of 0 indicates a perfect match. Most measures are normalized to
have a value in the range of [0,1]. It is explicitly mentioned above
if this is not the case. When the reference is set, we perform the dis-
similarity measure computations. For each fiber in a non-reference
result, we compute the dissimilarity to all fibers of the reference.
We then chose a configurable number of "best" matches, that is,
those reference fibers with the lowest dissimilarity, and store them
for further analysis.

4. FIAKER

FIAKER provides methods for the analysis of data resulting from
fiber characteristics pipelines. The workflow realized with FIAKER
is depicted in Figure 4. Input is an ensemble of results, ideally along
with a reference result, as described in detail in Section 4.1. The
techniques employed to visualize this information are laid out in
Section 4.2.

4.1. Input Data

The input to FIAKER are the computed characteristics of the fibers
in each analyzed result. As the datasets analyzed so far contained
only straight fibers, FIAKER visualizes fibers as cylinders.

The cylinder geometry for each fiber is specified by the start and
end point as well as the diameter. The tool can also process supple-
mentary characteristics per fiber. All characteristics are expected in
table (CSV) format, as shown in Figure 4(a). In addition, FIAKER
can handle the fiber characteristics from intermediate steps of an
iterative algorithm. As a preprocessing step, the user selects one
of the loaded results as reference, i.e., as base for comparisons, as
shown in Figure 4(b). The tool then computes for each fiber in each
result the dissimilarity to all fibers in the reference. In absence of
a true reference, any one of the results can be chosen as a base for
comparisons.

4.2. Visualization Design

The main interface of FIAKER utilizing multiple linked views can
be seen in Figure 3. Its main views are the result list (a) and the
spatial view (b), as well as detail views in the form of an itera-
tion step chart (c) as well as a scatter plot matrix (d). Addition-
ally, a selection view (e), an interaction protocol (f) as well as a
settings view (g) are shown when required. We recommend view-
ing the supplemental video for a better impression of the interac-
tions between these views. FIAKER is available as a module in the
open_iA tool [FWS∗19].
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(a) (b)

(c)

(d)

(g)

(e) (f)

Figure 3: The main interface of FIAKER consists of a list of all results (a), a spatial view displaying one or more results (b), which in
this case is color coded by the value of the do

3 measure for each fiber. The iteration step chart (c) provides details on the progression of
iterative refinement algorithms. The scatter plot matrix (d) provides details on the characteristics of each single fiber. A selection view (e),
an interaction protocol (f) and a settings widget (g) provide additional information and control where required.

4.2.1. Result List

The result list contains the name and a 3D preview for each re-
sult, as can be seen in Figure 3(a). All fibers in a preview are
assigned a color which is specific to the single result. Alongside,
aggregate weighted measure bar charts in an interface similar to
LineUp [GLG∗13] enable ranking of the results for addressing Task
1a, the quantitative comparison of results, from Section 1. This task
is supported in addition by a histogram, showing the distribution of
a chosen characteristic. In addition this addresses task 3, the inves-
tigation of the influence of input data and parameters. To focus on
a specific result, users can filter their analyses in the results view.
Only the filtered results will then be displayed in the spatial view,
and also the iteration step chart and the scatter plot matrix will be
restricted to these results.

4.2.2. Spatial View

The spatial view shows a 3D visualization of all user-selected re-
sults, enabling the qualitative comparison of individual results, and
thus addressing task 1b. Fibers can be color-coded by the color spe-
cific to the result which they belong to. Alternatively, the reference
can be color-coded by the average dissimilarity measure value of
the matches to that fiber across all results, as shown in Figure 4(d).
Or, fibers can be colored by their individual match quality or all
other characteristics. These color-codings enable users to identify
fibers with specific properties, and thus addressing task 2b. The
bars of the histogram in the result list are colored as the fibers and

serve as color map. When fibers are selected, the unselected fibers
are displayed with increased transparency to provide the context, as
shown e.g. in Figure 5(a). For selected fibers, the closest matches
with the reference can be shown. To clarify the link between result
and reference fibers, connecting lines are shown, as can be seen in
Figure 6(a). Task 4, providing visualizations for communicating the
results, is addressed mainly through the spatial view as can be seen
in the case studies.

4.2.3. Detail Views

Users start navigating in the results list and the spatial view. Addi-
tionally, several detail views are available:

1. Iteration step chart, see Figure 3(c): When an iterative algorithm
is analyzed, where data from each of its iteration steps is avail-
able, this data can be tracked in the iteration step chart. It shows
the evolution of selected characteristics on the y-axis over the it-
eration steps on the x-axis. The user can switch to any iteration
step through a control in this view, and the spatial view will up-
date accordingly. In addition, an animation can be enabled that
automatically loops through all iteration steps. This view sup-
ports task 1a by enabling the comparison between intermediate
and final results.

2. A scatter plot matrix, see Figure 3(d), shows the characteristics
of all fibers in the currently selected results, revealing potential
correlations between the characteristics. Each dot represents a
single fiber, and is colored exactly like the corresponding fiber.
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Figure 4: FIAKER workflow: Input data (a) is loaded, then a ref-
erence is set (b), fibers in other results are matched to the reference
(c), and finally exploration starts with the result list and spatial
overview visualizations (d).

It supports the analysis of the influence of fiber and dataset char-
acteristics on the results in task 3.

3. Selection details, see Figure 3(e): Whenever a selection is made,
its details are recorded in this two-part view. Its left part keeps a
history of all selections as a list. The right part displays a tree of
all fibers and the results they belong to for the current selection.
Selections in general mainly address tasks 2 and 4, where users
need to be able to select a subset of fibers for further analysis. In
the spatial view, single fibers can be selected by dragging a se-
lection rectangle, which selects all fibers where start or end point
are in a view frustum spanned by the rectangle, or by clicking on
a single fiber. Fibers can also be selected in the scatter plot ma-
trix and the iteration step chart.

4. The interaction protocol, see Figure 3(f), logs all user interac-
tions. This view, along with the selection details, makes it easy
to keep track of the analysis process. Having a reproducible anal-
ysis process is crucial when providing visualizations for commu-
nicating the results, thus these views mainly address task 4.

5. A settings view, see Figure 3(g), provides access to visualiza-
tion options such as modifying the opacity of selected and non-
selected fibers, as well as specifying which fiber dissimilarity
measure to use for finding the closest reference fiber.

5. Evaluation

FIAKER was developed in close collaboration with scientists
working on fiber characterization algorithms. We evaluated the tool

on results from two different algorithms. One aspect of our evalua-
tion was the iterative refinement of our methods regarding usability.
The most important aspects are found in the comparison of the anal-
ysis with our tool to the analysis using existing methods, as well as
the kind of insights that can be gained with our tool. We further
evaluate the fiber dissimilarity measures, and finally show how the
methods can be extended to support the analysis of other datasets,
demonstrated by pore space analysis. Where not noted otherwise,
the case studies were conducted by the tool developer, and observed
and commented on by a domain expert. The domain experts were
also provided the tool to play around on their own, and several of
our insights in Section 6 came from the discussion of analysis ses-
sions performed by the domain experts on their own.

5.1. Evaluated Algorithms

We evaluate FIAKER using synthetic results as well as with results
obtained from datasets acquired by computed tomography. These
datasets show objects made of fiber-reinforced polymer with glass
or carbon fibers. The projection images from the CT device, or re-
constructed volumes, that serve as input to the fiber characterization
algorithms, are typically several hundreds of megabytes to several
gigabytes in size. That is, there are about a hundred to a few thou-
sand projection images of size 2300×2300 pixels, yielding recon-
structed volumes of up to 23003 voxels. Since most of our visu-
alizations don’t deal with these image or volume datasets directly,
we are not limited by their size. Instead, we almost exclusively use
polygonal data extracted from the characteristics computed by the
fiber characterization algorithms. Thus, our algorithms are limited
only by the number of fibers found. So far, we have tested our vi-
sualizations with results containing up to 400000 fibers.

The datasets that served as basis in the case studies below are the
result of applying two different fiber characterization algorithms.
The first one, described by Salaberger et al. [SJKK15], starts with
a reconstructed volume and applies a sequential pipeline of image
processing operations, including template matching. Through this
process, the center lines of the fibers are extracted, from which la-
beled fiber images are created. We will refer to this algorithm as
Fiber Characterization through Template Matching (FCTM).

The second algorithm we have been evaluating, Parametric Re-
construction (PARE), has recently been published by Elberfeld et
al. [Edd∗18]. It directly inputs the CT projection images, performs
an initial fiber characterization from a SIRT reconstruction using
the ASTRA toolbox [vPC∗16] and then refines this characterization
by projecting the model of the recognized fibers forward (again)
into the space of the projection images. The result of this forward
projection is used to compute the projection error, i.e., the differ-
ence to the original projection images. The characterization is then
adjusted to reduce the projection error, using a gradient descent
optimization method. This minimization of the projection error is
repeated for each fiber separately until no further reduction in the
error is noticed, or a maximum number of iterations is reached.

5.2. Usability Evaluation and User Centered Design

We developed FIAKER over the course of approximately six
months. Designs and prototypes were regularly presented to our
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Figure 5: Fibers of the synthetic dataset, color-coded by dissimi-
larity to reference (a); the color-mapping is given in the distribu-
tion chart (b). Fibers with the worst reference match are selected
in the scatter plot (c). The long vertical fiber in the middle (green)
and its development over the iterations is analyzed in the 3D view
in comparison to closest reference fibers (grayish-violet) as well as
in the iteration steps chart (d).

collaborators on average once per week, and we discussed the di-
rection of further enhancements that we intended to implement. It
was thus a thoroughly user-centered design process, following the
best practices and avoiding the pitfalls outlined in the design study
methodology by Sedlmair et al [SMM12].

We continuously improved the usability of our prototype based
on user input. We also conducted an interview, focusing solely on
improving usability. The result of this interview was a list of items
where usability was lacking in the prototype version available at
the time of the interview. One such issue, for example, was that
coloring single fibers by characteristics such as their length was
available only through the settings dialog of the scatter plot matrix.
This restriction resulted from design decisions of previous tools
built in the same framework as our prototype, where the scatter plot
matrix played a more central role. In our context, that was pretty
counter-intuitive. The list of items, together with the suggestions

for improvement, was then discussed with the visualization experts
among the co-authors, where the implementation details of each
improvement where outlined and refined. This resulted in a work-
able, prioritized list of changes to the prototype that we were able
to quickly implement in the next prototype release.

Overall, there were four collaborators involved in the develop-
ment of the tool who are developing algorithms for fiber charac-
terization or working with such algorithms on a daily basis. Fur-
thermore, four experts on visualizations for material science lended
their expertise in designing and improving the visualization tech-
niques.

5.3. Case Study 1: Synthetic Data

This case study considers a simple synthetic ensemble consisting of
only two results. One is the result of the PARE method, the other is
the reference, a result artificially created to approximate the distri-
bution of fibers in real datasets. The projection images, input to the
PARE method, were generated directly from this reference. There-
fore, the reference in this case is an actual ground truth.

The first goal in this case study is to test our methods on a simple
dataset, and also to serve as an introduction into how to apply these
methods. After defining the reference, we start by color-coding the
fibers obtained by PARE by their dissimilarity to the best-matching
fiber in the reference, as shown in Figure 5(a). Red indicates a bad
match based on the color map depicted in (b). In (a), we already
have selected the seven fibers with the worst match according to
our overlap-based measure do

3 in the scatter plot Figure 5(c). We
chose these because they seem to separate slightly from the rest
of the fibers. Interestingly, they come from both ends of the fiber
length spectrum. It can be seen that two fibers extend beyond the
bounding box of the reference, which is shown as a black wireframe
box in Figure 5(a).

Now let us focus on the long, near-vertical fiber in the middle,
to see why the PARE algorithm performs badly for it. We selected
this fiber by clicking on it in the 3D view. Figure 5(d) shows its
length difference to the best matching reference fiber (Length Diff.)
as well as its contribution to the projection error (Proj. Error), the
optimization criterion of the iterative PARE algorithm, over the it-
eration steps. The picture on the left of the charts shows the fiber in
the first iteration step. Note that we view it from a slightly different
camera position in (a) that is better suited for our further analysis
purposes. On the right of the charts we see the same fiber in the last
iteration step. From the 3D visualizations and the charts we can see
that the projection error decreases, while the difference in length
to the closest reference fiber actually increases. In the 3D views,
the fibers are colored by their result color, green for the PARE re-
sult and grayish-violet for the reference. We can see that there is
another reference fiber that is initially only touched by the green
fiber, but at the end of the optimization, the start of the reference
fiber is completely covered by the green fiber. On its other side,
in the course of the optimization the green fiber grows out of the
bounding volume of the reference, which does not adversely affect
the projection error, because it outgrows the field of view and the
projection error can not provide negative feedback for this change.
This is actionable information for the algorithm developer. On one
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(a) (b) (c) (d) (e) 

PARE Result fiber Reference fiber

Figure 6: Worst-case examples for dissimilarity measures. dc
2

matches fibers similar in angle and length but at a different po-
sition (a), while dp

3 matches a more suitable, shorter fiber (b). dp
3

fails for another fiber where it prefers a close position-wise match
with no overlap (c), where do

3 prefers a shorter fiber with overlap
(d). However, the highest scoring fiber for do

3 is also among the first
four best matches for dp

3 (e).

hand, care must be taken to avoid generating fibers which grow
to cover more than one fiber in the reference. On the other hand,
it shows that reducing the projection error as an optimization cri-
terion is not sufficient and additional constraints are required to
prevent fibers from being placed outside the analyzed regions. Pre-
vious methods for analyzing this dataset involved scripts to match
result to reference fibers, as well as computation of errors for the
best matches. In contrast to these, with FIAKER, the fibers going
outside of the optimized volume were immediately apparent.

5.4. Case Study 2: Measure Validation

To analyze the fiber dissimilarity measures we utilized the synthetic
data from the previous section. Figure 6 shows examples where
the first developed dissimilarity measures performed badly. For the
measures based on the fiber characteristics, dc, we quickly realized
that using them would require a fine-tuned balance of weighting for
all characteristic difference terms. In the example shown in (a), the
length is obviously weighted too high. The reference fiber with the
best match is the same size, but slightly different in orientation, and
somewhat distant from the result fiber. The best measure consider-
ing only positions, dp

3 , for which the best match is shown in Fig-
ure 6(b), performs better and shows that there is a reference fiber
that overlaps with the result fiber. The large difference in length is
the most likely explanation for why the characteristics-based mea-
sure did not select this reference fiber as best match.

An example where measure dp
3 also does not perform well is

shown in Figure 6(c), where we see that start and endpoints of the
matching reference fiber are pretty close, but there is no overlap.
The best match shown in Figure 6(b), computed via the overlap
measure do

3 , is the true best match, according to our collaborators.
We see that there is a lot of overlap, but the length varies consid-

LengthDiff do
3 Distribution(a) (b)Result

Figure 7: List of results computed with PARE. Results lower in
the list were computed from input data containing higher levels of
noise. This is reflected in the average length difference to the ref-
erence (a), which increases with higher noise as well as the distri-
bution of do

3 across the fibers of each result (b), which is flattening
with higher noise.

erably, which means that one of the endpoints of the reference is
quite far from its counterpart on the result fiber.

When analyzing the best four matches according to measure dp
3 ,

which are shown in Figure 6(e), we see that it includes the best
match of measure do

3 , shown in Figure 6(d). In the examples eval-
uated for the synthetic dataset, it is always the case that the best
match according to do

3 is contained in the first few matches of dp
3 .

Even though dp
3 does not always give the correct order, it provides

a good first estimate of match quality. We can use it to optimize
the computation of overlap measures, which is too expensive to be
computed for each possible pairing of fibers in reference and result,
especially when analyzing a large ensemble or results with a large
number of fibers. We therefore only compute the overlap measures
for the best 25 matches according to the dp

3 measure.

5.5. Case Study 3: Influence of Noise in Synthetic Data

We also looked at the influence of noise on the outcome of the
PARE algorithm. From a ground truth, several projection images
were generated with different levels of additive Gaussian noise with
a mean of 0 and a sigma value of 0, 0.5, 1, 2, 3, 4, and 5. A list of the
results gathered for this analysis is shown in Figure 7. We show the
difference in length measure as well as the overlap-based dissimi-
larity measure. Even though we have a separate ground truth avail-
able again, we could also consider the 0% noise level as a baseline,
as we are only interested in how the noise affects the outcome. The
difference in length remains approximately the same until noise
with a sigma value of 4 is generated. At sigma value 5, the differ-
ence in length begins to increase steeply. The overlap-based dis-
similarity measure yields slightly more differentiated results. From
noise with sigma value between 0 and 2 it varies only slightly, then
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(a)

(c)

(d) (e)

No match

Good

(b)Match
Quality

Bad

Color by do
3 DistributionFiber

Count
Avg.
do

3 
Avg.
dp

3 

Figure 8: Fiber characterization results computed from CT scans
with different resolutions, the resolution decreases with positions
further down in the list (a), reference is the last item, highlighted
in gray. The reference is color coded by the match quality (b), the
color map is on the left. Selections: Shortest fibers in the lowest-
resolution result (c), Five worst-matching fibers in the lowest (d)
and second-lowest (e) resolution results, the color map for (c-e) is
encoded in the histograms in (a)

starts to grow more rapidly. Also here, we see a sharp increase at
noise created with a sigma value of 5. We conclude that the algo-
rithm is quite robust to noise with sigma values lower than 2.

5.6. Case Study 4: Influence of Resolution Differences in Real
CT Scans

The data analyzed here are based on CT scans of a small cut-out
of a larger glass fiber-reinforced polypropylene structure with 30
weight-percent fiber content. The specimen was scanned four times
with different resolutions, the voxel sizes of these scans were 1 µm,
2 µm, 3 µm, and 5 µm. For each of these scans, the analyzed en-
semble contains the result of the FCTM approach, plus an addi-

tional manually labeled result for reference. The fibers in these
datasets have an average diameter of 12 µm and a length varying
widely between 30 µm and 460 µm. Before loading in our tool,
this data was analyzed using some custom scripts [SJKK15] for a
quantitative evaluation, in addition to a visual analysis with Fiber-
Scout [WAL∗14]. As each result needed to be explored separately,
and quantitative evaluation was done in scripts custom-written for
this purpose, the time to conduct this previous analysis was in the
range of at least a week. The goal of the previous analysis was to
optimize the FCTM algorithm. For our case study, the goal was to
analyze whether key findings were missed in the previous analysis.

In the list in Figure 8(a) we see the results in decreasing order
of resolution, except for the last entry which is the reference. We
observe that the fiber count decreases with the resolution, which
clearly indicates that not all fibers are detected with lower resolu-
tion. The point-based dissimilarity measure shows similar values
for the first two entries, while the overlap-based dissimilarity mea-
sure correlates better with the resolution.

The spatial overview in Figure 8(b) shows two fibers in the ref-
erence, marked in blue, without matches in any of the results, not
even in the highest-resolution scan. The existence of two such un-
matched fibers was new to the domain expert, and was missed the
first time he analyzed the data. This is remarkable given that these
important findings became clear within minutes after loading the
data. These two fibers clearly deserve a closer look in the input
data, for which currently an external tool is needed. Another inter-
esting detail is revealed when looking at the fibers with high dis-
similarity to their best reference match according to measure do

3 .
Figure 8(d) and (e) show the five fibers with the highest dissim-
ilarity, for the characterization performed on the 1 µm and 2 µm
scans, respectively. These fibers are all very short, leading to the
preliminary hypothesis that the algorithm is working better for long
fibers. However, as can be seen from Figure 8(c), where all fibers of
lengths between approximately 30 µm to 60 µm are selected, there
is no consistent trend for all short fibers. Two fibers in (d) and (e)
are the same, indicating systematic problems of the algorithm with
these two fibers, as they are not well recognized in the results of
two completely different scans. In the study, we found a total of
four fibers that require further investigation.

5.7. Case Study 5: Feasibility Study of Analyzing Other
Datasets

The goal of this section is to lay out how FIAKER can be adapted to
analyze algorithms other than fiber characterization pipelines. Our
methods can be applied to the analysis of multiple results, when
each of those results contains a number of parametrizable objects
which can be visualized through a geometric primitive. To adapt
our current methods to another object type, the following modifica-
tions or extensions are required:

1. Create a 3D visualization for the geometric primitive represent-
ing an object

2. Define at least one dissimilarity measure between two objects of
the given type

We have started experiments to analyze results from pore charac-
terization algorithms, in our case generated by the FeatureAnalyzer
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Figure 9: Pore characterization results loaded in FIAKER

tool [WAG∗16, SWP∗18]. Pores often feature a circular or ellipti-
cal shape, and may therefore be represented as ellipses. As dissim-
ilarity measure, the distance between the center points of the two
pores, combined with the difference in their extents in x-, y- and z-
direction may be considered. Figure 9 shows the result list and the
spatial view with the results of three differently parameterized pore
characterizations. The required adaptations to our tool were done
within approximately half a day by a single software programmer.

6. Discussion of Design Decisions and Lessons Learned

In the result list, initially we only showed a list of result previews.
Then we implemented a simplified version of LineUp [GLG∗13]
for quantitative ranking. We considered implementing a design
similar to WeightLifter by Pajer et al. [PSTW∗17], in order to
explore the weight Space more comprehensively. But we decided
against this, as it was not needed for the current analysis scenar-
ios. For comparison of value distributions across results, we added
histograms.

It turned out that scatter plot matrices were not used as much
as we had expected. As they play a major role in FiberScout
[WAL∗14], a previous tool for fiber analysis, we expected them
to be a key element in the analysis again. In our case, it turned out
that the main focus of the analysis is on the result list and the spatial
view. We assume this is due to the fact that our tool focuses more
on comparing multiple results. In FiberScout, the focus was more
on correlations between different fiber characteristics.

Our users unanimously were asking for a 3D view and were
thrilled to see its possibilities for visualizing the results when they
first saw the prototype. This was surprising and contrary to the ex-
perience from previous work on the analysis of image processing
tools in material sciences (e.g., for analyzing image segmentation
results [FMH16]). The preference for 3D in this case comes, on the
one hand, from the fact that we have polygonal data, not volumes,
where slice images are easier to comprehend than direct volume
rendering that is prone to occlusion. On the other hand, the many
ways to select and thus concentrate on just a few fibers make it
easy to focus in the 3D visualization on the currently interesting
parts of the result. In this drill-down scenario, the majority of the
fibers are rendered highly transparent so that one can focus on the
few important fibers while maintaining their 3D context.

Selecting fibers in the 3D view was highly demanded by our
users. However, it turned out to be quite challenging. We first im-
plemented selection through drawing a rectangle. This selects those
fibers where any of their end points is contained in the view frustum

spanned by the rectangle. We first implemented a selection mech-
anism by selecting those fibers whose endpoints are contained in
the view frustum spanned by a user-drawn rectangle. It might have
been more intuitive to select any fiber which passes through the
rectangle. However, in practice, selecting only by end points al-
ready leads to selecting more fibers than wanted, as it is hard to
pinpoint only the start or end point of the fibers without including
others in the vicinity. In order to facilitate the selection of a par-
ticular fiber, we therefore also implemented a selection by a single
click. The click selects the fiber hit first by a ray cast in viewing di-
rection into the scene. Again, this can be problematic if the desired
fiber is somewhere in the middle of the region of interest and thus
occluded by other fibers. This motivated us to implement a selec-
tion view that allows the user to further refine a selection made.

An interesting lesson also was the design of the dissimilarity
measures. Initial drafts had not put much emphasis on this topic.
But during exploration of the datasets, we discovered problems
with the initial measures. We could also verify with our tool that
the measures we created as a consequence could overcome these
limitations, as described in Section 5.4. This points towards the
generalizability of our methods: The same methods that are helpful
in understanding and debugging fiber characterization algorithms
have also helped us in developing appropriate dissimilarity mea-
sures.

One potential future extension proposed by our collaborators is
the ability to present the reconstructed CT volume as localized con-
text for visualizing selected fibers for which the characterization
did not work well.

7. Conclusion

We have developed FIAKER, a tool implementing methods for ana-
lyzing and comparing the results of fiber reconstruction algorithms.
We refined the usability and utility of these methods by developing
them in close collaboration with scientists working on fiber recon-
struction algorithms or applying such algorithms on a daily basis.
We evaluated the tool on the outcomes of two different fiber recon-
struction algorithms, and were able to show that the tool quickly
provides insight into where a fiber reconstruction algorithm still
needs improvement. In addition, the methods can help to under-
stand which algorithm performs better in comparison to a refer-
ence, both in general as well as for specific locations or specific
fibers. We also showed how our methods may be generalized and
applied to the analysis of any collection of objects representable by
geometric primitives, and demonstrated this in our case study on
pore characterization results.
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[KRR∗18] KONOPCZYŃSKI T., RATHORE D., RATHORE J., KRÖGER
T., ZHENG L., GARBE C. S., CARMIGNATO S., HESSER J.: Fully
convolutional deep network architectures for automatic short glass fiber
semantic segmentation from CT scans. In Eigth Conference on In-
dustrial Computed Tomography (2018). URL: https://ndt.net/
?id=21916. 2

[LGD∗17] LABRA N., GUEVARA P., DUCLAP D., HOUENOU J.,
POUPON C., MANGIN J.-F., FIGUEROA M.: Fast automatic seg-
mentation of white matter streamlines based on a multi-subject bun-
dle atlas. NeuroInformatics 15, 1 (2017), 71–86. doi:10.1007/
s12021-016-9316-7. 3

[MGB∗18] MATEJKA J., GLUECK M., BRADNER E., HASHEMI A.,
GROSSMAN T., FITZMAURICE G.: Dream Lens: Exploration and visu-
alization of large-scale generative design datasets. In CHI Conference on
Human Factors in Computing Systems (2018), ACM, pp. 369:1–369:12.
doi:10.1145/3173574.3173943. 2

[OW07] O’DONNELL L. J., WESTIN C.-F.: Automatic tractography
segmentation using a high-dimensional white matter atlas. IEEE Trans-
actions on Medical Imaging 26, 11 (2007), 1562–1575. doi:10.
1109/TMI.2007.906785. 3

[PSTW∗17] PAJER S., STREIT M., TORSNEY-WEIR T., SPECHTEN-
HAUSER F., MÖLLER T., PIRINGER H.: WeightLifter: Visual weight
space exploration for multi-criteria decision making. IEEE Transactions
on Visualization and Computer Graphics (Proceedings InfoVis 2016) 23,
1 (2017), 611–620. doi:10.1109/TVCG.2016.2598589. 10

[QV15] QUAN T. A., VO B.: Similarity measure for fiber clustering: A
constant time complexity algorithm. In Seventh International Confer-
ence on Knowledge and Systems Engineering (2015), IEEE, pp. 286–
291. doi:10.1109/KSE.2015.48. 3

[SHB∗14] SEDLMAIR M., HEINZL C., BRUCKNER S., PIRINGER H.,

MÖLLER T.: Visual parameter space analysis: A conceptual frame-
work. IEEE Transactions on Visualization and Computer Graphics 20,
12 (2014), 2161–2170. doi:10.1109/TVCG.2014.2346321. 2

[SJKK15] SALABERGER D., JERABEK M., KOCH T., KASTNER J.:
Consideration of accuracy of quantitative X-ray CT analyses for short-
glass-fibre-reinforced polymers. Materials Science Forum 825, 1
(2015), 907–913. doi:10.4028/www.scientific.net/MSF.
825-826.907. 2, 6, 9

[SKK∗11] SALABERGER D., KANNAPPAN K. A., KASTNER J.,
REUSSNER J., AUINGER T.: Evaluation of computed tomography
data from fibre reinforced polymers to determine fibre length distribu-
tion. International Polymer Processing 26, 3 (2011), 283–291. doi:
10.3139/217.2441. 2

[SMM12] SEDLMAIR M., MEYER M., MUNZNER T.: Design study
methodology: Reflections from the trenches and the stacks. IEEE Trans-
actions on Visualization and Computer Graphics 18, 12 (2012), 2431–
2440. doi:10.1109/TVCG.2012.213. 7

[SPA∗14] SCHMIDT J., PREINER R., AUZINGER T., WIMMER M.,
GRÖLLER E., BRUCKNER S.: YMCA - your mesh comparison applica-
tion. In IEEE Visual Analytics Science and Technology (VAST) (2014),
IEEE. doi:10.1109/VAST.2014.7042491. 2

[SV18] SCHULTZ T., VILANOVA A.: Diffusion MRI visualization. NMR
in Biomedicine (2018), e3902. doi:10.1002/nbm.3902. 3

[SWP∗18] SCHIWARTH M., WEISSENBÖCK J., PLANK B., FRÖHLER
B., HEINZL C., KASTNER J.: Visual analysis of void and reinforce-
ment characteristics in X-ray computed tomography dataset series of
fiber-reinforced polymers. In 13th International Conference on Textile
Composites (2018), IOP Publishing. doi:10.1088/1757-899X/
406/1/012014. 10

[TWMSK18] TORSNEY-WEIR T., MÖLLER T., SEDLMAIR M., KIRBY
R. M.: Hypersliceplorer: Interactive visualization of shapes in multiple
dimensions. Computer Graphics Forum 37, 3 (2018), 229–240. doi:
10.1111/cgf.13415. 3

[vPC∗16] VAN AARLE W., PALENSTIJN W. J., CANT J., JANSSENS E.,
BLEICHRODT F., DABRAVOLSKI A., DE BEENHOUWER J., BATEN-
BURG K. J., SIJBERS J.: Fast and flexible X-ray tomography us-
ing the astra toolbox. Optics Express 24, 22 (2016), 25129–25147.
doi:10.1364/OE.24.025129. 6

[WAG∗16] WEISSENBÖCK J., AMIRKHANOV A., GRÖLLER E., KAST-
NER J., HEINZL C.: PorosityAnalyzer: Visual analysis and evaluation
of segmentation pipelines to determine the porosity in fiber-reinforced
polymers. In IEEE Conference on Visual Analytics Science and Tech-
nology (2016), IEEE, pp. 101–110. doi:10.1109/VAST.2016.
7883516. 10

[WAL∗14] WEISSENBÖCK J., AMIRKHANOV A., LI W., REH A.,
AMIRKHANOV A., GRÖLLER E., KASTNER J., HEINZL C.: Fiber-
Scout: An interactive tool for exploring and analyzing fiber reinforced
polymers. In IEEE Pacific Visualization Symposium (2014), IEEE,
pp. 153–160. doi:10.1109/PacificVis.2014.52. 2, 9, 10

[ZFS∗19] ZHANG H., FREY S., STEEB H., URIBE D., ERTL T., WANG
W.: Visualization of bubble formation in porous media. IEEE Transac-
tions on Visualization and Computer Graphics 25, 1 (2019), 1060–1069.
doi:10.1109/TVCG.2018.2864506. 2

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

283




	Abstract
	Contents
	Introduction
	Motivation and Challenges
	Visual Analysis of ''Rich'' XCT Data

	Contributions
	Challenge 1: Interactive Visualization of Spatial and Quantitative Data
	Challenge 2 & 3: vPSA, Comparative and Ensemble Visualization 
	Grand Challenge: Visualization Theory and Modeling
	open_iA
	Future Perspectives
	Authorship Statement

	Bibliography
	Core Publications

